预测太阳耀斑

IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Hugh Hudson
{"title":"预测太阳耀斑","authors":"Hugh Hudson","doi":"10.1007/s11207-024-02418-4","DOIUrl":null,"url":null,"abstract":"<div><p>Solar flares commonly have a “hot onset precursor event” (HOPE), detectable from soft X-ray observations. To detect this requires subtraction of pre-flare fluxes from the non-flaring Sun prior to the event, fitting an isothermal emission model to the flare excess fluxes by comparing the GOES passbands at 1 – 8 Å and 0.5 – 4 Å, and plotting the timewise evolution of the flare emission in a diagram of temperature vs. emission measure. The HOPE then appears as an initial “horizontal branch” in this diagram. It precedes the nonthermal impulsive phase of the flare and thus the flare peak in soft X-rays as well. We use this property to define a “flare anticipation index” (FAI), which can serve as an alert for observational programs aimed at solar flares based on near-real-time soft X-ray observations. This FAI gives lead times of a few minutes and produces very few false positive alerts, even for flare brightenings that are too weak to merit NOAA classification.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"300 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11207-024-02418-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Anticipating Solar Flares\",\"authors\":\"Hugh Hudson\",\"doi\":\"10.1007/s11207-024-02418-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Solar flares commonly have a “hot onset precursor event” (HOPE), detectable from soft X-ray observations. To detect this requires subtraction of pre-flare fluxes from the non-flaring Sun prior to the event, fitting an isothermal emission model to the flare excess fluxes by comparing the GOES passbands at 1 – 8 Å and 0.5 – 4 Å, and plotting the timewise evolution of the flare emission in a diagram of temperature vs. emission measure. The HOPE then appears as an initial “horizontal branch” in this diagram. It precedes the nonthermal impulsive phase of the flare and thus the flare peak in soft X-rays as well. We use this property to define a “flare anticipation index” (FAI), which can serve as an alert for observational programs aimed at solar flares based on near-real-time soft X-ray observations. This FAI gives lead times of a few minutes and produces very few false positive alerts, even for flare brightenings that are too weak to merit NOAA classification.</p></div>\",\"PeriodicalId\":777,\"journal\":{\"name\":\"Solar Physics\",\"volume\":\"300 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11207-024-02418-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11207-024-02418-4\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11207-024-02418-4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

太阳耀斑通常有一个“热起前兆事件”(HOPE),可以通过软x射线观测到。为了检测到这一点,需要在事件发生之前减去非耀斑前的太阳通量,通过比较1 - 8 Å和0.5 - 4 Å的GOES通带,拟合等温发射模型来模拟耀斑的过量通量,并在温度与发射测量的图表中绘制耀斑发射的时间演变。然后,HOPE在此图中作为初始的“水平分支”出现。它先于耀斑的非热脉冲阶段,因此也先于软x射线的耀斑峰值。我们利用这一特性定义了“耀斑预期指数”(FAI),它可以作为基于近实时软x射线观测的太阳耀斑观测计划的警报。这种FAI给出的预警时间只有几分钟,而且产生的误报非常少,即使是对亮度太弱而不值得NOAA分类的耀斑也不例外。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anticipating Solar Flares

Solar flares commonly have a “hot onset precursor event” (HOPE), detectable from soft X-ray observations. To detect this requires subtraction of pre-flare fluxes from the non-flaring Sun prior to the event, fitting an isothermal emission model to the flare excess fluxes by comparing the GOES passbands at 1 – 8 Å and 0.5 – 4 Å, and plotting the timewise evolution of the flare emission in a diagram of temperature vs. emission measure. The HOPE then appears as an initial “horizontal branch” in this diagram. It precedes the nonthermal impulsive phase of the flare and thus the flare peak in soft X-rays as well. We use this property to define a “flare anticipation index” (FAI), which can serve as an alert for observational programs aimed at solar flares based on near-real-time soft X-ray observations. This FAI gives lead times of a few minutes and produces very few false positive alerts, even for flare brightenings that are too weak to merit NOAA classification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Physics
Solar Physics 地学天文-天文与天体物理
CiteScore
5.10
自引率
17.90%
发文量
146
审稿时长
1 months
期刊介绍: Solar Physics was founded in 1967 and is the principal journal for the publication of the results of fundamental research on the Sun. The journal treats all aspects of solar physics, ranging from the internal structure of the Sun and its evolution to the outer corona and solar wind in interplanetary space. Papers on solar-terrestrial physics and on stellar research are also published when their results have a direct bearing on our understanding of the Sun.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信