基于Airy应力函数的纯压缩壳抗震性能

IF 1.9 4区 工程技术 Q3 MECHANICS
Carlo Olivieri, Sam Cocking, Francesco Fabbrocino, Antonino Iannuzzo, Luca Placidi, Sigrid Adriaenssens
{"title":"基于Airy应力函数的纯压缩壳抗震性能","authors":"Carlo Olivieri,&nbsp;Sam Cocking,&nbsp;Francesco Fabbrocino,&nbsp;Antonino Iannuzzo,&nbsp;Luca Placidi,&nbsp;Sigrid Adriaenssens","doi":"10.1007/s00161-024-01350-z","DOIUrl":null,"url":null,"abstract":"<div><p>Purely compressed shells are often elegant and highly efficient structural forms, but this leanness may create risk if they are subjected to unexpected patterns and magnitudes of loading, such as may arise due to seismic events. In the same way that historic masonry structures were designed to sustain loads by activating purely compressive force paths, a modern metamaterial can be designed for specific purposes following the same logic. Conventional analysis methods for compression-only shells and vaults, often developed for masonry structures, have tended not to model combined vertical and horizontal loads directly. This has created a significant challenge for engineers assessing historic vaults or designing new shells. To address this gap, this paper presents an enhanced method based on membrane equilibrium analysis (MEA) and the static theorem of limit analysis. This approach is the first application of MEA to directly consider vertical and horizontal body forces acting on a compression-only shell through a parametric formulation of an Airy stress function. The method is applied to a case study of a sail vault subjected to vertical and horizontal loads. Moreover, it is demonstrated how this approach can be used to define iso-resistant shapes that offer more sustainable design options while preserving structural capacity.</p></div>","PeriodicalId":525,"journal":{"name":"Continuum Mechanics and Thermodynamics","volume":"37 2","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00161-024-01350-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Seismic capacity of purely compressed shells based on Airy stress function\",\"authors\":\"Carlo Olivieri,&nbsp;Sam Cocking,&nbsp;Francesco Fabbrocino,&nbsp;Antonino Iannuzzo,&nbsp;Luca Placidi,&nbsp;Sigrid Adriaenssens\",\"doi\":\"10.1007/s00161-024-01350-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Purely compressed shells are often elegant and highly efficient structural forms, but this leanness may create risk if they are subjected to unexpected patterns and magnitudes of loading, such as may arise due to seismic events. In the same way that historic masonry structures were designed to sustain loads by activating purely compressive force paths, a modern metamaterial can be designed for specific purposes following the same logic. Conventional analysis methods for compression-only shells and vaults, often developed for masonry structures, have tended not to model combined vertical and horizontal loads directly. This has created a significant challenge for engineers assessing historic vaults or designing new shells. To address this gap, this paper presents an enhanced method based on membrane equilibrium analysis (MEA) and the static theorem of limit analysis. This approach is the first application of MEA to directly consider vertical and horizontal body forces acting on a compression-only shell through a parametric formulation of an Airy stress function. The method is applied to a case study of a sail vault subjected to vertical and horizontal loads. Moreover, it is demonstrated how this approach can be used to define iso-resistant shapes that offer more sustainable design options while preserving structural capacity.</p></div>\",\"PeriodicalId\":525,\"journal\":{\"name\":\"Continuum Mechanics and Thermodynamics\",\"volume\":\"37 2\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00161-024-01350-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Continuum Mechanics and Thermodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00161-024-01350-z\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Continuum Mechanics and Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00161-024-01350-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

纯压缩壳通常是优雅和高效的结构形式,但如果它们受到意想不到的模式和大小的负载,例如可能由于地震事件而产生的负载,这种精益可能会产生风险。就像历史上的砖石结构被设计成通过激活纯压缩力路径来承受载荷一样,现代的超材料也可以按照同样的逻辑被设计为特定的目的。通常为砌体结构开发的纯压缩壳和拱顶的传统分析方法往往不直接模拟竖向和水平荷载的组合。这给工程师们评估历史拱顶或设计新拱顶带来了巨大的挑战。为了解决这一问题,本文提出了一种基于膜平衡分析(MEA)和极限分析静力定理的改进方法。这种方法是MEA的第一个应用,通过Airy应力函数的参数化公式直接考虑作用在压缩壳上的垂直和水平体力。将该方法应用于船帆顶在垂直和水平荷载作用下的实例研究。此外,它还展示了如何使用这种方法来定义抗等抗形状,在保留结构容量的同时提供更可持续的设计选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seismic capacity of purely compressed shells based on Airy stress function

Purely compressed shells are often elegant and highly efficient structural forms, but this leanness may create risk if they are subjected to unexpected patterns and magnitudes of loading, such as may arise due to seismic events. In the same way that historic masonry structures were designed to sustain loads by activating purely compressive force paths, a modern metamaterial can be designed for specific purposes following the same logic. Conventional analysis methods for compression-only shells and vaults, often developed for masonry structures, have tended not to model combined vertical and horizontal loads directly. This has created a significant challenge for engineers assessing historic vaults or designing new shells. To address this gap, this paper presents an enhanced method based on membrane equilibrium analysis (MEA) and the static theorem of limit analysis. This approach is the first application of MEA to directly consider vertical and horizontal body forces acting on a compression-only shell through a parametric formulation of an Airy stress function. The method is applied to a case study of a sail vault subjected to vertical and horizontal loads. Moreover, it is demonstrated how this approach can be used to define iso-resistant shapes that offer more sustainable design options while preserving structural capacity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
15.40%
发文量
92
审稿时长
>12 weeks
期刊介绍: This interdisciplinary journal provides a forum for presenting new ideas in continuum and quasi-continuum modeling of systems with a large number of degrees of freedom and sufficient complexity to require thermodynamic closure. Major emphasis is placed on papers attempting to bridge the gap between discrete and continuum approaches as well as micro- and macro-scales, by means of homogenization, statistical averaging and other mathematical tools aimed at the judicial elimination of small time and length scales. The journal is particularly interested in contributions focusing on a simultaneous description of complex systems at several disparate scales. Papers presenting and explaining new experimental findings are highly encouraged. The journal welcomes numerical studies aimed at understanding the physical nature of the phenomena. Potential subjects range from boiling and turbulence to plasticity and earthquakes. Studies of fluids and solids with nonlinear and non-local interactions, multiple fields and multi-scale responses, nontrivial dissipative properties and complex dynamics are expected to have a strong presence in the pages of the journal. An incomplete list of featured topics includes: active solids and liquids, nano-scale effects and molecular structure of materials, singularities in fluid and solid mechanics, polymers, elastomers and liquid crystals, rheology, cavitation and fracture, hysteresis and friction, mechanics of solid and liquid phase transformations, composite, porous and granular media, scaling in statics and dynamics, large scale processes and geomechanics, stochastic aspects of mechanics. The journal would also like to attract papers addressing the very foundations of thermodynamics and kinetics of continuum processes. Of special interest are contributions to the emerging areas of biophysics and biomechanics of cells, bones and tissues leading to new continuum and thermodynamical models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信