Carlo Olivieri, Sam Cocking, Francesco Fabbrocino, Antonino Iannuzzo, Luca Placidi, Sigrid Adriaenssens
{"title":"基于Airy应力函数的纯压缩壳抗震性能","authors":"Carlo Olivieri, Sam Cocking, Francesco Fabbrocino, Antonino Iannuzzo, Luca Placidi, Sigrid Adriaenssens","doi":"10.1007/s00161-024-01350-z","DOIUrl":null,"url":null,"abstract":"<div><p>Purely compressed shells are often elegant and highly efficient structural forms, but this leanness may create risk if they are subjected to unexpected patterns and magnitudes of loading, such as may arise due to seismic events. In the same way that historic masonry structures were designed to sustain loads by activating purely compressive force paths, a modern metamaterial can be designed for specific purposes following the same logic. Conventional analysis methods for compression-only shells and vaults, often developed for masonry structures, have tended not to model combined vertical and horizontal loads directly. This has created a significant challenge for engineers assessing historic vaults or designing new shells. To address this gap, this paper presents an enhanced method based on membrane equilibrium analysis (MEA) and the static theorem of limit analysis. This approach is the first application of MEA to directly consider vertical and horizontal body forces acting on a compression-only shell through a parametric formulation of an Airy stress function. The method is applied to a case study of a sail vault subjected to vertical and horizontal loads. Moreover, it is demonstrated how this approach can be used to define iso-resistant shapes that offer more sustainable design options while preserving structural capacity.</p></div>","PeriodicalId":525,"journal":{"name":"Continuum Mechanics and Thermodynamics","volume":"37 2","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00161-024-01350-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Seismic capacity of purely compressed shells based on Airy stress function\",\"authors\":\"Carlo Olivieri, Sam Cocking, Francesco Fabbrocino, Antonino Iannuzzo, Luca Placidi, Sigrid Adriaenssens\",\"doi\":\"10.1007/s00161-024-01350-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Purely compressed shells are often elegant and highly efficient structural forms, but this leanness may create risk if they are subjected to unexpected patterns and magnitudes of loading, such as may arise due to seismic events. In the same way that historic masonry structures were designed to sustain loads by activating purely compressive force paths, a modern metamaterial can be designed for specific purposes following the same logic. Conventional analysis methods for compression-only shells and vaults, often developed for masonry structures, have tended not to model combined vertical and horizontal loads directly. This has created a significant challenge for engineers assessing historic vaults or designing new shells. To address this gap, this paper presents an enhanced method based on membrane equilibrium analysis (MEA) and the static theorem of limit analysis. This approach is the first application of MEA to directly consider vertical and horizontal body forces acting on a compression-only shell through a parametric formulation of an Airy stress function. The method is applied to a case study of a sail vault subjected to vertical and horizontal loads. Moreover, it is demonstrated how this approach can be used to define iso-resistant shapes that offer more sustainable design options while preserving structural capacity.</p></div>\",\"PeriodicalId\":525,\"journal\":{\"name\":\"Continuum Mechanics and Thermodynamics\",\"volume\":\"37 2\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00161-024-01350-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Continuum Mechanics and Thermodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00161-024-01350-z\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Continuum Mechanics and Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00161-024-01350-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Seismic capacity of purely compressed shells based on Airy stress function
Purely compressed shells are often elegant and highly efficient structural forms, but this leanness may create risk if they are subjected to unexpected patterns and magnitudes of loading, such as may arise due to seismic events. In the same way that historic masonry structures were designed to sustain loads by activating purely compressive force paths, a modern metamaterial can be designed for specific purposes following the same logic. Conventional analysis methods for compression-only shells and vaults, often developed for masonry structures, have tended not to model combined vertical and horizontal loads directly. This has created a significant challenge for engineers assessing historic vaults or designing new shells. To address this gap, this paper presents an enhanced method based on membrane equilibrium analysis (MEA) and the static theorem of limit analysis. This approach is the first application of MEA to directly consider vertical and horizontal body forces acting on a compression-only shell through a parametric formulation of an Airy stress function. The method is applied to a case study of a sail vault subjected to vertical and horizontal loads. Moreover, it is demonstrated how this approach can be used to define iso-resistant shapes that offer more sustainable design options while preserving structural capacity.
期刊介绍:
This interdisciplinary journal provides a forum for presenting new ideas in continuum and quasi-continuum modeling of systems with a large number of degrees of freedom and sufficient complexity to require thermodynamic closure. Major emphasis is placed on papers attempting to bridge the gap between discrete and continuum approaches as well as micro- and macro-scales, by means of homogenization, statistical averaging and other mathematical tools aimed at the judicial elimination of small time and length scales. The journal is particularly interested in contributions focusing on a simultaneous description of complex systems at several disparate scales. Papers presenting and explaining new experimental findings are highly encouraged. The journal welcomes numerical studies aimed at understanding the physical nature of the phenomena.
Potential subjects range from boiling and turbulence to plasticity and earthquakes. Studies of fluids and solids with nonlinear and non-local interactions, multiple fields and multi-scale responses, nontrivial dissipative properties and complex dynamics are expected to have a strong presence in the pages of the journal. An incomplete list of featured topics includes: active solids and liquids, nano-scale effects and molecular structure of materials, singularities in fluid and solid mechanics, polymers, elastomers and liquid crystals, rheology, cavitation and fracture, hysteresis and friction, mechanics of solid and liquid phase transformations, composite, porous and granular media, scaling in statics and dynamics, large scale processes and geomechanics, stochastic aspects of mechanics. The journal would also like to attract papers addressing the very foundations of thermodynamics and kinetics of continuum processes. Of special interest are contributions to the emerging areas of biophysics and biomechanics of cells, bones and tissues leading to new continuum and thermodynamical models.