聚丙交酯-羟基乙酸酯熔体热稳定性及水解降解动力学研究

IF 3.4 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Beibei Chen, Mark A. Costello, Louise Kuehster, Nathaniel A. Lynd, Bin Qin, Yan Wang, Feng Zhang
{"title":"聚丙交酯-羟基乙酸酯熔体热稳定性及水解降解动力学研究","authors":"Beibei Chen,&nbsp;Mark A. Costello,&nbsp;Louise Kuehster,&nbsp;Nathaniel A. Lynd,&nbsp;Bin Qin,&nbsp;Yan Wang,&nbsp;Feng Zhang","doi":"10.1208/s12249-024-03018-y","DOIUrl":null,"url":null,"abstract":"<div><p>Poly(lactide-co-glycolide) (PLGA) is widely used in a variety of long-acting injectables. However, its biodegradable nature creates potential chemical stability challenges during melt extrusion, where PLGA is exposed to elevated temperature (100–140 °C) for several minutes. This study evaluated the thermal stability of three PLGA grades (Resomer® 502, 502H, and 505) with varying molecular weights and chain-ends using a differential scanning calorimeter and twin-screw extruder. DSC results revealed that both residual water content and chain-end groups significantly accelerate PLGA degradation. At 0.2% water content, all samples maintained good stability (less than 15% reduction in molecular weight). However, at 0.4% water content, Resomer 502H, which has acid end groups, experienced significant degradation (45% reduction in molecular weight) after 30 min at 140 °C due to catalyzed hydrolysis. The extruded samples remained stable across tested barrel temperatures (100 °C and 140 °C) and screw speeds (125 and 250 rpm). Further investigations of PLGA with 0.2% water content demonstrates that the hydrolysis rates of Resomer® 502 and 505 were comparable, indicating that molecular weight does not influence hydrolysis rate. In contrast, Resomer® 502H exhibited a higher hydrolysis rate and a slightly higher activation energy, suggesting a greater temperature dependency. Additionally, when subjected to 200 °C for one hour with less than 0.03% water content, Resomer® 505 showed a less than 7% reduction in molecular weight, indicating minimal thermal degradation. Conversely, Resomer® 502 and 502H experienced an increase in molecular weight, which was likely attributed to recombination reactions, particularly in Resomer® 502H, which has higher tin content (170 ppm).</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the Thermal Stability and Hydrolytic Degradation Kinetics of Poly(Lactide-co-Glycolide) Melts\",\"authors\":\"Beibei Chen,&nbsp;Mark A. Costello,&nbsp;Louise Kuehster,&nbsp;Nathaniel A. Lynd,&nbsp;Bin Qin,&nbsp;Yan Wang,&nbsp;Feng Zhang\",\"doi\":\"10.1208/s12249-024-03018-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Poly(lactide-co-glycolide) (PLGA) is widely used in a variety of long-acting injectables. However, its biodegradable nature creates potential chemical stability challenges during melt extrusion, where PLGA is exposed to elevated temperature (100–140 °C) for several minutes. This study evaluated the thermal stability of three PLGA grades (Resomer® 502, 502H, and 505) with varying molecular weights and chain-ends using a differential scanning calorimeter and twin-screw extruder. DSC results revealed that both residual water content and chain-end groups significantly accelerate PLGA degradation. At 0.2% water content, all samples maintained good stability (less than 15% reduction in molecular weight). However, at 0.4% water content, Resomer 502H, which has acid end groups, experienced significant degradation (45% reduction in molecular weight) after 30 min at 140 °C due to catalyzed hydrolysis. The extruded samples remained stable across tested barrel temperatures (100 °C and 140 °C) and screw speeds (125 and 250 rpm). Further investigations of PLGA with 0.2% water content demonstrates that the hydrolysis rates of Resomer® 502 and 505 were comparable, indicating that molecular weight does not influence hydrolysis rate. In contrast, Resomer® 502H exhibited a higher hydrolysis rate and a slightly higher activation energy, suggesting a greater temperature dependency. Additionally, when subjected to 200 °C for one hour with less than 0.03% water content, Resomer® 505 showed a less than 7% reduction in molecular weight, indicating minimal thermal degradation. Conversely, Resomer® 502 and 502H experienced an increase in molecular weight, which was likely attributed to recombination reactions, particularly in Resomer® 502H, which has higher tin content (170 ppm).</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":6925,\"journal\":{\"name\":\"AAPS PharmSciTech\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AAPS PharmSciTech\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1208/s12249-024-03018-y\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSciTech","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1208/s12249-024-03018-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

聚丙交酯(PLGA)广泛应用于各种长效注射剂中。然而,在熔融挤压过程中,PLGA的可生物降解特性带来了潜在的化学稳定性挑战,其中PLGA暴露在高温(100-140°C)下几分钟。本研究使用差示扫描量热计和双螺杆挤出机评估了具有不同分子量和链端的三种PLGA等级(Resomer®502,502H和505)的热稳定性。DSC结果表明,残余含水量和链端基团都显著加速了PLGA的降解。在0.2%的含水量下,所有样品都保持了良好的稳定性(分子量降低小于15%)。然而,当含水量为0.4%时,具有酸性端基的Resomer 502H在140°C下经过30分钟的催化水解后发生了显著降解(分子量降低45%)。挤压后的样品在测试的筒体温度(100°C和140°C)和螺杆转速(125和250 rpm)下保持稳定。进一步研究了0.2%水含量的PLGA,结果表明Resomer®502和505的水解率相当,表明分子量不影响水解率。相比之下,Resomer®502H表现出更高的水解率和略高的活化能,表明更大的温度依赖性。此外,Resomer®505在含水量低于0.03%的情况下,在200°C下放置1小时,其分子量降低幅度小于7%,表明热降解最小。相反,Resomer®502和502H的分子量增加,这可能是由于重组反应,特别是在Resomer®502H中,锡含量较高(170 ppm)。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Investigation of the Thermal Stability and Hydrolytic Degradation Kinetics of Poly(Lactide-co-Glycolide) Melts

Investigation of the Thermal Stability and Hydrolytic Degradation Kinetics of Poly(Lactide-co-Glycolide) Melts

Poly(lactide-co-glycolide) (PLGA) is widely used in a variety of long-acting injectables. However, its biodegradable nature creates potential chemical stability challenges during melt extrusion, where PLGA is exposed to elevated temperature (100–140 °C) for several minutes. This study evaluated the thermal stability of three PLGA grades (Resomer® 502, 502H, and 505) with varying molecular weights and chain-ends using a differential scanning calorimeter and twin-screw extruder. DSC results revealed that both residual water content and chain-end groups significantly accelerate PLGA degradation. At 0.2% water content, all samples maintained good stability (less than 15% reduction in molecular weight). However, at 0.4% water content, Resomer 502H, which has acid end groups, experienced significant degradation (45% reduction in molecular weight) after 30 min at 140 °C due to catalyzed hydrolysis. The extruded samples remained stable across tested barrel temperatures (100 °C and 140 °C) and screw speeds (125 and 250 rpm). Further investigations of PLGA with 0.2% water content demonstrates that the hydrolysis rates of Resomer® 502 and 505 were comparable, indicating that molecular weight does not influence hydrolysis rate. In contrast, Resomer® 502H exhibited a higher hydrolysis rate and a slightly higher activation energy, suggesting a greater temperature dependency. Additionally, when subjected to 200 °C for one hour with less than 0.03% water content, Resomer® 505 showed a less than 7% reduction in molecular weight, indicating minimal thermal degradation. Conversely, Resomer® 502 and 502H experienced an increase in molecular weight, which was likely attributed to recombination reactions, particularly in Resomer® 502H, which has higher tin content (170 ppm).

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AAPS PharmSciTech
AAPS PharmSciTech 医学-药学
CiteScore
6.80
自引率
3.00%
发文量
264
审稿时长
2.4 months
期刊介绍: AAPS PharmSciTech is a peer-reviewed, online-only journal committed to serving those pharmaceutical scientists and engineers interested in the research, development, and evaluation of pharmaceutical dosage forms and delivery systems, including drugs derived from biotechnology and the manufacturing science pertaining to the commercialization of such dosage forms. Because of its electronic nature, AAPS PharmSciTech aspires to utilize evolving electronic technology to enable faster and diverse mechanisms of information delivery to its readership. Submission of uninvited expert reviews and research articles are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信