Hong Li, Xiwen Cui, Guoqing Yuan, Shimeng Xing, Lianqing Zhu
{"title":"毛细管微腔共振耦合激发与检测研究","authors":"Hong Li, Xiwen Cui, Guoqing Yuan, Shimeng Xing, Lianqing Zhu","doi":"10.1007/s00340-025-08385-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a sensing detection method based on the fiber wedge angle microstructure for coupling excitation of microtubular cavity resonance was proposed. The theoretical model of coupling resonance between the fiber wedge end-face and microtubular cavity was established. The sensing detection mechanism of WGM resonance in the capillary microreactor was investigated. Through the simulation analysis of the factors influencing coupling efficiency and the sensing sensitivity by the capillary microcavity WGM coupling resonant structure, the structural parameters of the coupling resonant system were optimized. The experimental system was established for testing resonant excitation characteristics under different coupling structure parameters, and detecting the RI sensing of solution. The proposed capillary micro-cavity resonant detection system has good robustness, simple resonant excitation structure, and easy integration and practical application. The established theoretical model and analysis results provide new ideas for the application of optical fiber microstructure in capillary microreactor biochemical assay applications.</p></div>","PeriodicalId":474,"journal":{"name":"Applied Physics B","volume":"131 2","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on coupling excitation and detection of capillary microcavity resonance\",\"authors\":\"Hong Li, Xiwen Cui, Guoqing Yuan, Shimeng Xing, Lianqing Zhu\",\"doi\":\"10.1007/s00340-025-08385-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, a sensing detection method based on the fiber wedge angle microstructure for coupling excitation of microtubular cavity resonance was proposed. The theoretical model of coupling resonance between the fiber wedge end-face and microtubular cavity was established. The sensing detection mechanism of WGM resonance in the capillary microreactor was investigated. Through the simulation analysis of the factors influencing coupling efficiency and the sensing sensitivity by the capillary microcavity WGM coupling resonant structure, the structural parameters of the coupling resonant system were optimized. The experimental system was established for testing resonant excitation characteristics under different coupling structure parameters, and detecting the RI sensing of solution. The proposed capillary micro-cavity resonant detection system has good robustness, simple resonant excitation structure, and easy integration and practical application. The established theoretical model and analysis results provide new ideas for the application of optical fiber microstructure in capillary microreactor biochemical assay applications.</p></div>\",\"PeriodicalId\":474,\"journal\":{\"name\":\"Applied Physics B\",\"volume\":\"131 2\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics B\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00340-025-08385-3\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00340-025-08385-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Research on coupling excitation and detection of capillary microcavity resonance
In this paper, a sensing detection method based on the fiber wedge angle microstructure for coupling excitation of microtubular cavity resonance was proposed. The theoretical model of coupling resonance between the fiber wedge end-face and microtubular cavity was established. The sensing detection mechanism of WGM resonance in the capillary microreactor was investigated. Through the simulation analysis of the factors influencing coupling efficiency and the sensing sensitivity by the capillary microcavity WGM coupling resonant structure, the structural parameters of the coupling resonant system were optimized. The experimental system was established for testing resonant excitation characteristics under different coupling structure parameters, and detecting the RI sensing of solution. The proposed capillary micro-cavity resonant detection system has good robustness, simple resonant excitation structure, and easy integration and practical application. The established theoretical model and analysis results provide new ideas for the application of optical fiber microstructure in capillary microreactor biochemical assay applications.
期刊介绍:
Features publication of experimental and theoretical investigations in applied physics
Offers invited reviews in addition to regular papers
Coverage includes laser physics, linear and nonlinear optics, ultrafast phenomena, photonic devices, optical and laser materials, quantum optics, laser spectroscopy of atoms, molecules and clusters, and more
94% of authors who answered a survey reported that they would definitely publish or probably publish in the journal again
Publishing essential research results in two of the most important areas of applied physics, both Applied Physics sections figure among the top most cited journals in this field.
In addition to regular papers Applied Physics B: Lasers and Optics features invited reviews. Fields of topical interest are covered by feature issues. The journal also includes a rapid communication section for the speedy publication of important and particularly interesting results.