直接测量微观粒子间内聚力的简单方法

IF 1.8 4区 物理与天体物理 Q4 CHEMISTRY, PHYSICAL
Johnathan Hoggarth, Kari Dalnoki-Veress
{"title":"直接测量微观粒子间内聚力的简单方法","authors":"Johnathan Hoggarth,&nbsp;Kari Dalnoki-Veress","doi":"10.1140/epje/s10189-024-00459-y","DOIUrl":null,"url":null,"abstract":"<p>We present a simple and inexpensive method for measuring weak cohesive interactions. This technique is applied to the specific case of oil droplets with a depletion interaction, dispersed in an aqueous solution. The experimental setup involves creating a short string of droplets while immobilizing a single droplet. The droplets are held together via depletion interactions, and a single cohesive bond holds together nearest neighbours. Initially, the buoyant droplets are held in a flat horizontal chamber. The droplets float to the top of the chamber and are in contact with a flat glass interface. In the horizontal configuration, there is no component of the effective buoyant force acting in the plane of the chamber. The angle of the chamber is gradually increased, and the effective buoyant force acting on the string of droplets slowly increases. At a critical point, when the combination of gravity and buoyancy is equal to the cohesive force, the droplet string will detach from the immobile droplet. Our method allows for a simple direct measurement of cohesive forces on the tens of pico-Newton scale. To illustrate the validity of this technique, the droplet radii and concentration of depletant are varied, and their impact on the cohesive force is measured. This method offers a simple, accessible, and reproducible means of exploring cohesive interactions beyond the specific case of oil droplets and a depletion interaction.</p><p>(Top) Side and top-down view schematic of the experimental chamber. (Bottom) Stable and unstable dangling chain of droplets. The chain detaches from the stationary droplet once the effective buoyant force is greater than the cohesive force</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"48 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simple method for the direct measurement of cohesive forces between microscopic particles\",\"authors\":\"Johnathan Hoggarth,&nbsp;Kari Dalnoki-Veress\",\"doi\":\"10.1140/epje/s10189-024-00459-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a simple and inexpensive method for measuring weak cohesive interactions. This technique is applied to the specific case of oil droplets with a depletion interaction, dispersed in an aqueous solution. The experimental setup involves creating a short string of droplets while immobilizing a single droplet. The droplets are held together via depletion interactions, and a single cohesive bond holds together nearest neighbours. Initially, the buoyant droplets are held in a flat horizontal chamber. The droplets float to the top of the chamber and are in contact with a flat glass interface. In the horizontal configuration, there is no component of the effective buoyant force acting in the plane of the chamber. The angle of the chamber is gradually increased, and the effective buoyant force acting on the string of droplets slowly increases. At a critical point, when the combination of gravity and buoyancy is equal to the cohesive force, the droplet string will detach from the immobile droplet. Our method allows for a simple direct measurement of cohesive forces on the tens of pico-Newton scale. To illustrate the validity of this technique, the droplet radii and concentration of depletant are varied, and their impact on the cohesive force is measured. This method offers a simple, accessible, and reproducible means of exploring cohesive interactions beyond the specific case of oil droplets and a depletion interaction.</p><p>(Top) Side and top-down view schematic of the experimental chamber. (Bottom) Stable and unstable dangling chain of droplets. The chain detaches from the stationary droplet once the effective buoyant force is greater than the cohesive force</p>\",\"PeriodicalId\":790,\"journal\":{\"name\":\"The European Physical Journal E\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal E\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epje/s10189-024-00459-y\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal E","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epje/s10189-024-00459-y","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种测量弱内聚相互作用的简单而廉价的方法。该技术适用于分散在水溶液中具有耗竭相互作用的油滴的具体情况。实验装置包括在固定单个液滴的同时制造一串短液滴。液滴通过耗竭相互作用聚集在一起,一个单一的粘性键将最近的邻居聚集在一起。最初,有浮力的液滴被保持在一个平坦的水平腔室中。液滴漂浮到腔室的顶部,并与平面玻璃界面接触。在水平结构中,没有有效浮力的分量作用在腔室的平面上。腔体角度逐渐增大,作用在水滴串上的有效浮力逐渐增大。在一个临界点上,当重力和浮力的组合等于黏结力时,液滴串将与不动的液滴分离。我们的方法允许在几十皮牛顿尺度上简单地直接测量内聚力。为了说明该方法的有效性,研究了液滴半径和消耗剂浓度的变化,以及它们对黏结力的影响。该方法提供了一种简单、可接近、可重复的方法,用于探索油滴和耗竭相互作用之外的内聚相互作用。(上)实验室的侧面和自上而下的示意图。(下)稳定和不稳定的悬浮液滴链。当有效浮力大于内聚力时,链就会从静止液滴上脱离
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simple method for the direct measurement of cohesive forces between microscopic particles

We present a simple and inexpensive method for measuring weak cohesive interactions. This technique is applied to the specific case of oil droplets with a depletion interaction, dispersed in an aqueous solution. The experimental setup involves creating a short string of droplets while immobilizing a single droplet. The droplets are held together via depletion interactions, and a single cohesive bond holds together nearest neighbours. Initially, the buoyant droplets are held in a flat horizontal chamber. The droplets float to the top of the chamber and are in contact with a flat glass interface. In the horizontal configuration, there is no component of the effective buoyant force acting in the plane of the chamber. The angle of the chamber is gradually increased, and the effective buoyant force acting on the string of droplets slowly increases. At a critical point, when the combination of gravity and buoyancy is equal to the cohesive force, the droplet string will detach from the immobile droplet. Our method allows for a simple direct measurement of cohesive forces on the tens of pico-Newton scale. To illustrate the validity of this technique, the droplet radii and concentration of depletant are varied, and their impact on the cohesive force is measured. This method offers a simple, accessible, and reproducible means of exploring cohesive interactions beyond the specific case of oil droplets and a depletion interaction.

(Top) Side and top-down view schematic of the experimental chamber. (Bottom) Stable and unstable dangling chain of droplets. The chain detaches from the stationary droplet once the effective buoyant force is greater than the cohesive force

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal E
The European Physical Journal E CHEMISTRY, PHYSICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
2.60
自引率
5.60%
发文量
92
审稿时长
3 months
期刊介绍: EPJ E publishes papers describing advances in the understanding of physical aspects of Soft, Liquid and Living Systems. Soft matter is a generic term for a large group of condensed, often heterogeneous systems -- often also called complex fluids -- that display a large response to weak external perturbations and that possess properties governed by slow internal dynamics. Flowing matter refers to all systems that can actually flow, from simple to multiphase liquids, from foams to granular matter. Living matter concerns the new physics that emerges from novel insights into the properties and behaviours of living systems. Furthermore, it aims at developing new concepts and quantitative approaches for the study of biological phenomena. Approaches from soft matter physics and statistical physics play a key role in this research. The journal includes reports of experimental, computational and theoretical studies and appeals to the broad interdisciplinary communities including physics, chemistry, biology, mathematics and materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信