流体或宇宙等离子体带外力项的广义变系数扩展Korteweg-de Vries方程的若干可积性质及解析解

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Hao-Dong Liu, Bo Tian, Yu-Qi Chen, Chong-Dong Cheng, Xiao-Tian Gao, Hong-Wen Shan
{"title":"流体或宇宙等离子体带外力项的广义变系数扩展Korteweg-de Vries方程的若干可积性质及解析解","authors":"Hao-Dong Liu,&nbsp;Bo Tian,&nbsp;Yu-Qi Chen,&nbsp;Chong-Dong Cheng,&nbsp;Xiao-Tian Gao,&nbsp;Hong-Wen Shan","doi":"10.1007/s10773-024-05840-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we investigate a generalized variable-coefficient extended Korteweg-de Vries equation with an external-force term for a fluid or a cosmic plasma. We obtain a Lax pair under some constraints via the Abolwitz-Kaup-Newell-Segur procedure. Based on that Lax pair, infinite conservation laws, Riccati- and Wahlquist-Estabrook-type auto-Bäcklund transformations are constructed. Via the Hirota method, we obtain some bilinear forms and <i>N</i>-soliton solutions, and derive the <i>H</i>th-order breather and hybrid solutions through the complex conjugated transformations, where <i>N</i> and <i>H</i> are two positive integers. The higher-order smooth positon solutions are constructed through the limit method. Moreover, those solutions are graphically presented under some choices of the variable coefficients and parameters.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"64 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Certain Integrable Properties and Analytic Solutions of a Generalized Variable-Coefficient Extended Korteweg-de Vries Equation with an External-Force Term for a Fluid or a Cosmic Plasma\",\"authors\":\"Hao-Dong Liu,&nbsp;Bo Tian,&nbsp;Yu-Qi Chen,&nbsp;Chong-Dong Cheng,&nbsp;Xiao-Tian Gao,&nbsp;Hong-Wen Shan\",\"doi\":\"10.1007/s10773-024-05840-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we investigate a generalized variable-coefficient extended Korteweg-de Vries equation with an external-force term for a fluid or a cosmic plasma. We obtain a Lax pair under some constraints via the Abolwitz-Kaup-Newell-Segur procedure. Based on that Lax pair, infinite conservation laws, Riccati- and Wahlquist-Estabrook-type auto-Bäcklund transformations are constructed. Via the Hirota method, we obtain some bilinear forms and <i>N</i>-soliton solutions, and derive the <i>H</i>th-order breather and hybrid solutions through the complex conjugated transformations, where <i>N</i> and <i>H</i> are two positive integers. The higher-order smooth positon solutions are constructed through the limit method. Moreover, those solutions are graphically presented under some choices of the variable coefficients and parameters.</p></div>\",\"PeriodicalId\":597,\"journal\":{\"name\":\"International Journal of Theoretical Physics\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Theoretical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10773-024-05840-3\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-024-05840-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了流体或宇宙等离子体带外力项的广义变系数扩展Korteweg-de Vries方程。利用abolwitz - kap - newwell - segur过程,得到了一些约束条件下的松弛对。基于该Lax对,构造了无限守恒定律、Riccati-和wahlquist - estrook - auto-Bäcklund型变换。通过Hirota方法,我们得到了一些双线性形式和N-孤子解,并通过复共轭变换得到了H阶呼吸解和混合解,其中N和H是两个正整数。利用极限法构造了高阶光滑位置解。并以图形的形式给出了不同系数和参数选择下的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Certain Integrable Properties and Analytic Solutions of a Generalized Variable-Coefficient Extended Korteweg-de Vries Equation with an External-Force Term for a Fluid or a Cosmic Plasma

In this paper, we investigate a generalized variable-coefficient extended Korteweg-de Vries equation with an external-force term for a fluid or a cosmic plasma. We obtain a Lax pair under some constraints via the Abolwitz-Kaup-Newell-Segur procedure. Based on that Lax pair, infinite conservation laws, Riccati- and Wahlquist-Estabrook-type auto-Bäcklund transformations are constructed. Via the Hirota method, we obtain some bilinear forms and N-soliton solutions, and derive the Hth-order breather and hybrid solutions through the complex conjugated transformations, where N and H are two positive integers. The higher-order smooth positon solutions are constructed through the limit method. Moreover, those solutions are graphically presented under some choices of the variable coefficients and parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信