具有超临界杀戮的分数阶拉普拉斯式

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Soobin Cho, Renming Song
{"title":"具有超临界杀戮的分数阶拉普拉斯式","authors":"Soobin Cho,&nbsp;Renming Song","doi":"10.1007/s00220-024-05201-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study Feynman-Kac semigroups of symmetric <span>\\(\\alpha \\)</span>-stable processes with supercritical killing potentials belonging to a large class of functions containing functions of the form <span>\\(b|x|^{-\\beta }\\)</span>, where <span>\\(b&gt;0\\)</span> and <span>\\(\\beta &gt;\\alpha \\)</span>. We obtain two-sided estimates on the densities <i>p</i>(<i>t</i>, <i>x</i>, <i>y</i>) of these semigroups for all <span>\\(t&gt;0\\)</span>, along with estimates for the corresponding Green functions.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional Laplacian with Supercritical Killings\",\"authors\":\"Soobin Cho,&nbsp;Renming Song\",\"doi\":\"10.1007/s00220-024-05201-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study Feynman-Kac semigroups of symmetric <span>\\\\(\\\\alpha \\\\)</span>-stable processes with supercritical killing potentials belonging to a large class of functions containing functions of the form <span>\\\\(b|x|^{-\\\\beta }\\\\)</span>, where <span>\\\\(b&gt;0\\\\)</span> and <span>\\\\(\\\\beta &gt;\\\\alpha \\\\)</span>. We obtain two-sided estimates on the densities <i>p</i>(<i>t</i>, <i>x</i>, <i>y</i>) of these semigroups for all <span>\\\\(t&gt;0\\\\)</span>, along with estimates for the corresponding Green functions.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-024-05201-5\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05201-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有超临界杀伤势的对称\(\alpha \) -稳定过程的Feynman-Kac半群,它们属于一类包含如下形式函数的函数:\(b|x|^{-\beta }\),其中\(b>0\)和\(\beta >\alpha \)。我们得到了所有\(t>0\)的这些半群的密度p(t, x, y)的双面估计,以及相应的Green函数的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional Laplacian with Supercritical Killings

In this paper, we study Feynman-Kac semigroups of symmetric \(\alpha \)-stable processes with supercritical killing potentials belonging to a large class of functions containing functions of the form \(b|x|^{-\beta }\), where \(b>0\) and \(\beta >\alpha \). We obtain two-sided estimates on the densities p(txy) of these semigroups for all \(t>0\), along with estimates for the corresponding Green functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信