Caihong Li, Changbao Guo, Xujiao Zhang, Xue Li, Yiqiu Yan
{"title":"基于滑坡密度优化Newmark模型的地震滑坡风险评价——来自青藏高原东部鲜水河断裂带的新认识","authors":"Caihong Li, Changbao Guo, Xujiao Zhang, Xue Li, Yiqiu Yan","doi":"10.1007/s12665-024-12056-5","DOIUrl":null,"url":null,"abstract":"<div><p>The potential hazard of seismic landslides is notably high within active fault zones, currently, the commonly used Newmark model for seismic landslide risk assessment often predicts cumulative displacement that are lower than the actual displacement, In order to enhance the earthquake landslide risk assessment accuracy, a new LS-D-Newmark (Landslide density Newmark) model, which considers the attenuation of geotechnical mechanical parameters in areas with different historical landslide densities, is proposed to evaluate the potential seismic landslide hazard. The Xianshuihe fault zone in the eastern Tibetan Plateau was selected as an example, a historical landslide database was established based on fault activity, field investigation, multi-source remote sensing and InSAR monitoring. The landslide hazards in the Xianshuihe fault zone are distributed linearly along the fault zone and are more concentrated at the intersection of the faults. The results of potential seismic landslide risk assessment based on LS-D-Newmark model show that its prediction accuracy (<i>AUC</i> value) increased from 0.78 to 0.84, a 7.69% improvement compared to the traditional Newmark model. Using the spatial characteristics of landslides triggered by the 2022 Luding Ms 6.8 earthquake for verification, and it was found that 75.87% of the landslides were located in the extremely high risk areas and high risk areas predicted by the LS-D-Newmark model, which is consistent with the actual distribution of landslides. The proposed LS-D-Newmark model effectively resolves the issue of underestimating displacement predictions, enhancing the accuracy of potential seismic landslide risk assessments, and provides an important reference for major project planning and construction as well as disaster prevention and mitigation in the region.</p></div>","PeriodicalId":542,"journal":{"name":"Environmental Earth Sciences","volume":"84 2","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seismic landslide risk assessment based on landslide density optimized Newmark model: new insights from the Xianshuihe fault zone in the Eastern Tibetan Plateau, China\",\"authors\":\"Caihong Li, Changbao Guo, Xujiao Zhang, Xue Li, Yiqiu Yan\",\"doi\":\"10.1007/s12665-024-12056-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The potential hazard of seismic landslides is notably high within active fault zones, currently, the commonly used Newmark model for seismic landslide risk assessment often predicts cumulative displacement that are lower than the actual displacement, In order to enhance the earthquake landslide risk assessment accuracy, a new LS-D-Newmark (Landslide density Newmark) model, which considers the attenuation of geotechnical mechanical parameters in areas with different historical landslide densities, is proposed to evaluate the potential seismic landslide hazard. The Xianshuihe fault zone in the eastern Tibetan Plateau was selected as an example, a historical landslide database was established based on fault activity, field investigation, multi-source remote sensing and InSAR monitoring. The landslide hazards in the Xianshuihe fault zone are distributed linearly along the fault zone and are more concentrated at the intersection of the faults. The results of potential seismic landslide risk assessment based on LS-D-Newmark model show that its prediction accuracy (<i>AUC</i> value) increased from 0.78 to 0.84, a 7.69% improvement compared to the traditional Newmark model. Using the spatial characteristics of landslides triggered by the 2022 Luding Ms 6.8 earthquake for verification, and it was found that 75.87% of the landslides were located in the extremely high risk areas and high risk areas predicted by the LS-D-Newmark model, which is consistent with the actual distribution of landslides. The proposed LS-D-Newmark model effectively resolves the issue of underestimating displacement predictions, enhancing the accuracy of potential seismic landslide risk assessments, and provides an important reference for major project planning and construction as well as disaster prevention and mitigation in the region.</p></div>\",\"PeriodicalId\":542,\"journal\":{\"name\":\"Environmental Earth Sciences\",\"volume\":\"84 2\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Earth Sciences\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12665-024-12056-5\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Earth Sciences","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s12665-024-12056-5","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Seismic landslide risk assessment based on landslide density optimized Newmark model: new insights from the Xianshuihe fault zone in the Eastern Tibetan Plateau, China
The potential hazard of seismic landslides is notably high within active fault zones, currently, the commonly used Newmark model for seismic landslide risk assessment often predicts cumulative displacement that are lower than the actual displacement, In order to enhance the earthquake landslide risk assessment accuracy, a new LS-D-Newmark (Landslide density Newmark) model, which considers the attenuation of geotechnical mechanical parameters in areas with different historical landslide densities, is proposed to evaluate the potential seismic landslide hazard. The Xianshuihe fault zone in the eastern Tibetan Plateau was selected as an example, a historical landslide database was established based on fault activity, field investigation, multi-source remote sensing and InSAR monitoring. The landslide hazards in the Xianshuihe fault zone are distributed linearly along the fault zone and are more concentrated at the intersection of the faults. The results of potential seismic landslide risk assessment based on LS-D-Newmark model show that its prediction accuracy (AUC value) increased from 0.78 to 0.84, a 7.69% improvement compared to the traditional Newmark model. Using the spatial characteristics of landslides triggered by the 2022 Luding Ms 6.8 earthquake for verification, and it was found that 75.87% of the landslides were located in the extremely high risk areas and high risk areas predicted by the LS-D-Newmark model, which is consistent with the actual distribution of landslides. The proposed LS-D-Newmark model effectively resolves the issue of underestimating displacement predictions, enhancing the accuracy of potential seismic landslide risk assessments, and provides an important reference for major project planning and construction as well as disaster prevention and mitigation in the region.
期刊介绍:
Environmental Earth Sciences is an international multidisciplinary journal concerned with all aspects of interaction between humans, natural resources, ecosystems, special climates or unique geographic zones, and the earth:
Water and soil contamination caused by waste management and disposal practices
Environmental problems associated with transportation by land, air, or water
Geological processes that may impact biosystems or humans
Man-made or naturally occurring geological or hydrological hazards
Environmental problems associated with the recovery of materials from the earth
Environmental problems caused by extraction of minerals, coal, and ores, as well as oil and gas, water and alternative energy sources
Environmental impacts of exploration and recultivation – Environmental impacts of hazardous materials
Management of environmental data and information in data banks and information systems
Dissemination of knowledge on techniques, methods, approaches and experiences to improve and remediate the environment
In pursuit of these topics, the geoscientific disciplines are invited to contribute their knowledge and experience. Major disciplines include: hydrogeology, hydrochemistry, geochemistry, geophysics, engineering geology, remediation science, natural resources management, environmental climatology and biota, environmental geography, soil science and geomicrobiology.