高激发态弦的散射、吸收和发射

IF 5.5 1区 物理与天体物理 Q1 Physics and Astronomy
M. Firrotta, E. Kiritsis, V. Niarchos
{"title":"高激发态弦的散射、吸收和发射","authors":"M. Firrotta,&nbsp;E. Kiritsis,&nbsp;V. Niarchos","doi":"10.1007/JHEP01(2025)051","DOIUrl":null,"url":null,"abstract":"<p>We study tree-level scattering processes of arbitrary string states using the DDF formalism and suitable coherent vertex operators. We obtain new exact compact formulae for heavy-heavy-light-light scattering amplitudes in open or closed bosonic string theories, and derive explicit exact expressions for the absorption cross-sections, and corresponding emission rates, of highly excited string states using the optical theorem and time reversal symmetry. We show that these expressions are independent of the microscopic structure of the excited string states without averaging. For the absorption of massless modes in open string theory, in particular, we find a constant, frequency-independent cross-section. In contrast, the corresponding cross-section for the absorption of massless modes by excited closed strings depends linearly on the frequency, implying a non-trivial grey-body factor. In both cases, at energies below the scale set by the mass of the highly excited strings, we find emission rates with a Boltzmann factor at Hagedorn temperature.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2025)051.pdf","citationCount":"0","resultStr":"{\"title\":\"Scattering, absorption and emission of highly excited strings\",\"authors\":\"M. Firrotta,&nbsp;E. Kiritsis,&nbsp;V. Niarchos\",\"doi\":\"10.1007/JHEP01(2025)051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study tree-level scattering processes of arbitrary string states using the DDF formalism and suitable coherent vertex operators. We obtain new exact compact formulae for heavy-heavy-light-light scattering amplitudes in open or closed bosonic string theories, and derive explicit exact expressions for the absorption cross-sections, and corresponding emission rates, of highly excited string states using the optical theorem and time reversal symmetry. We show that these expressions are independent of the microscopic structure of the excited string states without averaging. For the absorption of massless modes in open string theory, in particular, we find a constant, frequency-independent cross-section. In contrast, the corresponding cross-section for the absorption of massless modes by excited closed strings depends linearly on the frequency, implying a non-trivial grey-body factor. In both cases, at energies below the scale set by the mass of the highly excited strings, we find emission rates with a Boltzmann factor at Hagedorn temperature.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP01(2025)051.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP01(2025)051\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP01(2025)051","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

利用DDF形式和合适的相干顶点算子研究了任意弦状态的树级散射过程。我们得到了开放或封闭玻色子弦理论中重-重-轻-光散射振幅的精确紧化公式,并利用光学定理和时间反转对称性导出了高激发态吸收截面和相应发射率的精确表达式。我们证明了这些表达式与激发态的微观结构无关,无需平均。特别是对于开弦理论中无质量模式的吸收,我们发现了一个恒定的、与频率无关的截面。相比之下,激发闭合弦吸收无质量模式的相应截面与频率呈线性关系,这意味着一个非平凡的灰体因子。在这两种情况下,在能量低于高激发弦的质量所设定的尺度时,我们发现在哈格多恩温度下的发射率具有玻尔兹曼因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scattering, absorption and emission of highly excited strings

We study tree-level scattering processes of arbitrary string states using the DDF formalism and suitable coherent vertex operators. We obtain new exact compact formulae for heavy-heavy-light-light scattering amplitudes in open or closed bosonic string theories, and derive explicit exact expressions for the absorption cross-sections, and corresponding emission rates, of highly excited string states using the optical theorem and time reversal symmetry. We show that these expressions are independent of the microscopic structure of the excited string states without averaging. For the absorption of massless modes in open string theory, in particular, we find a constant, frequency-independent cross-section. In contrast, the corresponding cross-section for the absorption of massless modes by excited closed strings depends linearly on the frequency, implying a non-trivial grey-body factor. In both cases, at energies below the scale set by the mass of the highly excited strings, we find emission rates with a Boltzmann factor at Hagedorn temperature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics 物理-物理:粒子与场物理
CiteScore
10.30
自引率
46.30%
发文量
2107
审稿时长
1.5 months
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信