基于图像的VLC信号解调利用机器学习

IF 3.7 3区 计算机科学 Q2 TELECOMMUNICATIONS
Kaleem Ullah;Maaz Salman;Javad Bolboli;Wan-Young Chung
{"title":"基于图像的VLC信号解调利用机器学习","authors":"Kaleem Ullah;Maaz Salman;Javad Bolboli;Wan-Young Chung","doi":"10.1109/LCOMM.2024.3504524","DOIUrl":null,"url":null,"abstract":"Demodulation of visible light communication (VLC) signals using intensity modulation direct detection is limited by the noise inherent in the signal. To address this issue, we propose an enhanced machine learning (ML) image-based demodulator for on-off keying (OOK) modulated VLC signals. We designed and implemented a transmitter and receiver equipped with sensors to collect real-time environmental data. The transmission distance is varied, and the received waveform is converted into images. To minimize the computational load of the demodulator, we apply bicubic interpolation and image thresholding techniques to these images. Subsequently, we developed an ML-based demodulator using MobileNetV2 and trained the model with the collected dataset. To enhance the model’s versatility and accuracy, we used data augmentation techniques. Experimental results indicate that the proposed ML-driven demodulator significantly extends the communication range and increases noise tolerance, achieving a demodulation accuracy of 97.58%.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"29 1","pages":"145-149"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image-Based VLC Signal Demodulation Using Machine Learning\",\"authors\":\"Kaleem Ullah;Maaz Salman;Javad Bolboli;Wan-Young Chung\",\"doi\":\"10.1109/LCOMM.2024.3504524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Demodulation of visible light communication (VLC) signals using intensity modulation direct detection is limited by the noise inherent in the signal. To address this issue, we propose an enhanced machine learning (ML) image-based demodulator for on-off keying (OOK) modulated VLC signals. We designed and implemented a transmitter and receiver equipped with sensors to collect real-time environmental data. The transmission distance is varied, and the received waveform is converted into images. To minimize the computational load of the demodulator, we apply bicubic interpolation and image thresholding techniques to these images. Subsequently, we developed an ML-based demodulator using MobileNetV2 and trained the model with the collected dataset. To enhance the model’s versatility and accuracy, we used data augmentation techniques. Experimental results indicate that the proposed ML-driven demodulator significantly extends the communication range and increases noise tolerance, achieving a demodulation accuracy of 97.58%.\",\"PeriodicalId\":13197,\"journal\":{\"name\":\"IEEE Communications Letters\",\"volume\":\"29 1\",\"pages\":\"145-149\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10764787/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10764787/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

使用强度调制直接检测的可见光通信(VLC)信号解调受到信号固有噪声的限制。为了解决这个问题,我们提出了一种增强的基于机器学习(ML)图像的解调器,用于开关键控(OOK)调制的VLC信号。我们设计并实现了一个配备传感器的发射器和接收器,以收集实时环境数据。变换传输距离,将接收到的波形转换成图像。为了减少解调器的计算负荷,我们对这些图像应用了双三次插值和图像阈值分割技术。随后,我们使用MobileNetV2开发了基于ml的解调器,并使用收集的数据集训练模型。为了增强模型的通用性和准确性,我们使用了数据增强技术。实验结果表明,所提出的机器学习驱动解调器显著地扩展了通信范围,提高了噪声容忍度,解调精度达到97.58%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image-Based VLC Signal Demodulation Using Machine Learning
Demodulation of visible light communication (VLC) signals using intensity modulation direct detection is limited by the noise inherent in the signal. To address this issue, we propose an enhanced machine learning (ML) image-based demodulator for on-off keying (OOK) modulated VLC signals. We designed and implemented a transmitter and receiver equipped with sensors to collect real-time environmental data. The transmission distance is varied, and the received waveform is converted into images. To minimize the computational load of the demodulator, we apply bicubic interpolation and image thresholding techniques to these images. Subsequently, we developed an ML-based demodulator using MobileNetV2 and trained the model with the collected dataset. To enhance the model’s versatility and accuracy, we used data augmentation techniques. Experimental results indicate that the proposed ML-driven demodulator significantly extends the communication range and increases noise tolerance, achieving a demodulation accuracy of 97.58%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Communications Letters
IEEE Communications Letters 工程技术-电信学
CiteScore
8.10
自引率
7.30%
发文量
590
审稿时长
2.8 months
期刊介绍: The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信