基于迁移学习的微波元件大范围参数化建模方法

0 ENGINEERING, ELECTRICAL & ELECTRONIC
Shuxia Yan;Yuxing Li;Fengqi Qian;Weicong Na;Jia Nan Zhang
{"title":"基于迁移学习的微波元件大范围参数化建模方法","authors":"Shuxia Yan;Yuxing Li;Fengqi Qian;Weicong Na;Jia Nan Zhang","doi":"10.1109/LMWT.2024.3486160","DOIUrl":null,"url":null,"abstract":"This letter proposes an efficient sensitivity-driven stepwise modeling method for microwave components with a wide range of geometrical parameter variations. In the proposed method, the Pearson correlation coefficient is explored to solve the sensitivity analysis difficulty in accurately classifying the geometrical parameters into high-sensitivity parameters and low-sensitivity parameters. The relationship between high-sensitivity parameters and circuit responses is learned by the neural network as the first modeling step. Then, the effect of low-sensitivity parameters on the circuit response is restored in the second modeling step through transfer learning (TL), which leverages the knowledge gained from high-sensitivity parameters. Using the proposed sensitivity-driven stepwise modeling method allows us to achieve a much faster training convergence speed through effective knowledge transfer and reuse, consequently achieving similar accuracy in a shorter training time compared with existing methods using the same data. Two microwave modeling examples are used to illustrate the proposed method.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"35 1","pages":"19-22"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient Sensitivity-Driven Stepwise Method Incorporating Transfer Learning for Wide-Range Parametric Modeling of Microwave Components\",\"authors\":\"Shuxia Yan;Yuxing Li;Fengqi Qian;Weicong Na;Jia Nan Zhang\",\"doi\":\"10.1109/LMWT.2024.3486160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter proposes an efficient sensitivity-driven stepwise modeling method for microwave components with a wide range of geometrical parameter variations. In the proposed method, the Pearson correlation coefficient is explored to solve the sensitivity analysis difficulty in accurately classifying the geometrical parameters into high-sensitivity parameters and low-sensitivity parameters. The relationship between high-sensitivity parameters and circuit responses is learned by the neural network as the first modeling step. Then, the effect of low-sensitivity parameters on the circuit response is restored in the second modeling step through transfer learning (TL), which leverages the knowledge gained from high-sensitivity parameters. Using the proposed sensitivity-driven stepwise modeling method allows us to achieve a much faster training convergence speed through effective knowledge transfer and reuse, consequently achieving similar accuracy in a shorter training time compared with existing methods using the same data. Two microwave modeling examples are used to illustrate the proposed method.\",\"PeriodicalId\":73297,\"journal\":{\"name\":\"IEEE microwave and wireless technology letters\",\"volume\":\"35 1\",\"pages\":\"19-22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE microwave and wireless technology letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10746613/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE microwave and wireless technology letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10746613/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种有效的灵敏度驱动逐步建模方法,用于具有大范围几何参数变化的微波元件。该方法利用Pearson相关系数来解决灵敏度分析中难以将几何参数准确划分为高灵敏度参数和低灵敏度参数的问题。作为建模的第一步,神经网络学习了高灵敏度参数与电路响应之间的关系。然后,在第二步建模中,利用从高灵敏度参数中获得的知识,通过迁移学习(TL)恢复低灵敏度参数对电路响应的影响。利用本文提出的灵敏度驱动逐步建模方法,通过有效的知识转移和重用,我们可以获得更快的训练收敛速度,从而在更短的训练时间内获得与使用相同数据的现有方法相似的精度。用两个微波建模实例说明了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Sensitivity-Driven Stepwise Method Incorporating Transfer Learning for Wide-Range Parametric Modeling of Microwave Components
This letter proposes an efficient sensitivity-driven stepwise modeling method for microwave components with a wide range of geometrical parameter variations. In the proposed method, the Pearson correlation coefficient is explored to solve the sensitivity analysis difficulty in accurately classifying the geometrical parameters into high-sensitivity parameters and low-sensitivity parameters. The relationship between high-sensitivity parameters and circuit responses is learned by the neural network as the first modeling step. Then, the effect of low-sensitivity parameters on the circuit response is restored in the second modeling step through transfer learning (TL), which leverages the knowledge gained from high-sensitivity parameters. Using the proposed sensitivity-driven stepwise modeling method allows us to achieve a much faster training convergence speed through effective knowledge transfer and reuse, consequently achieving similar accuracy in a shorter training time compared with existing methods using the same data. Two microwave modeling examples are used to illustrate the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信