Andrew Maclellan;Louise H. Crockett;Robert W. Stewart
{"title":"流CNN的RFSoC调制分类:数据集生成和量化感知训练","authors":"Andrew Maclellan;Louise H. Crockett;Robert W. Stewart","doi":"10.1109/OJCAS.2024.3509627","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel FPGA-based Convolutional Neural Network (CNN) architecture for continuous radio data processing, specifically targeting modulation classification on the Zynq UltraScale+ Radio Frequency System on Chip (RFSoC) operating in real-time. Evaluated on AMD’s RFSoC2x2 development board, the design integrates General Matrix Multiplication (GEMM) optimisations and fixed-point arithmetic. We also present a method for creating Deep Learning (DL) data sets for wireless communications, incorporating the RFSoC into the data generation loop. Furthermore, we explore quantised-aware training, producing three modulation classification models with different fixed-point weight precisions (16-bit, 8-bit, and 4-bit). We interface with the implemented hardware through the open-source PYNQ project, which combines Python with programmable logic interaction, enabling real-time modulation prediction via a PYNQ-enabled Jupyter app. The three models, operating at a 128 MHz sampling rate prior to the decimation stage, were evaluated for accuracy and resource consumption. The 16-bit model achieved the highest accuracy with minimal additional resource usage compared to the 8-bit and 4-bit models, making it the optimal choice for deploying a modulation classifier at the receiver.","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":"6 ","pages":"38-49"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10772713","citationCount":"0","resultStr":"{\"title\":\"RFSoC Modulation Classification With Streaming CNN: Data Set Generation & Quantized-Aware Training\",\"authors\":\"Andrew Maclellan;Louise H. Crockett;Robert W. Stewart\",\"doi\":\"10.1109/OJCAS.2024.3509627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a novel FPGA-based Convolutional Neural Network (CNN) architecture for continuous radio data processing, specifically targeting modulation classification on the Zynq UltraScale+ Radio Frequency System on Chip (RFSoC) operating in real-time. Evaluated on AMD’s RFSoC2x2 development board, the design integrates General Matrix Multiplication (GEMM) optimisations and fixed-point arithmetic. We also present a method for creating Deep Learning (DL) data sets for wireless communications, incorporating the RFSoC into the data generation loop. Furthermore, we explore quantised-aware training, producing three modulation classification models with different fixed-point weight precisions (16-bit, 8-bit, and 4-bit). We interface with the implemented hardware through the open-source PYNQ project, which combines Python with programmable logic interaction, enabling real-time modulation prediction via a PYNQ-enabled Jupyter app. The three models, operating at a 128 MHz sampling rate prior to the decimation stage, were evaluated for accuracy and resource consumption. The 16-bit model achieved the highest accuracy with minimal additional resource usage compared to the 8-bit and 4-bit models, making it the optimal choice for deploying a modulation classifier at the receiver.\",\"PeriodicalId\":93442,\"journal\":{\"name\":\"IEEE open journal of circuits and systems\",\"volume\":\"6 \",\"pages\":\"38-49\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10772713\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of circuits and systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10772713/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10772713/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
RFSoC Modulation Classification With Streaming CNN: Data Set Generation & Quantized-Aware Training
This paper introduces a novel FPGA-based Convolutional Neural Network (CNN) architecture for continuous radio data processing, specifically targeting modulation classification on the Zynq UltraScale+ Radio Frequency System on Chip (RFSoC) operating in real-time. Evaluated on AMD’s RFSoC2x2 development board, the design integrates General Matrix Multiplication (GEMM) optimisations and fixed-point arithmetic. We also present a method for creating Deep Learning (DL) data sets for wireless communications, incorporating the RFSoC into the data generation loop. Furthermore, we explore quantised-aware training, producing three modulation classification models with different fixed-point weight precisions (16-bit, 8-bit, and 4-bit). We interface with the implemented hardware through the open-source PYNQ project, which combines Python with programmable logic interaction, enabling real-time modulation prediction via a PYNQ-enabled Jupyter app. The three models, operating at a 128 MHz sampling rate prior to the decimation stage, were evaluated for accuracy and resource consumption. The 16-bit model achieved the highest accuracy with minimal additional resource usage compared to the 8-bit and 4-bit models, making it the optimal choice for deploying a modulation classifier at the receiver.