{"title":"多播ISAC中的分层功能优先级:最优接纳控制和离散相位波束形成","authors":"Luis F. Abanto-Leon;Setareh Maghsudi","doi":"10.1109/LCOMM.2024.3506696","DOIUrl":null,"url":null,"abstract":"We investigate the joint admission control and discrete-phase multicast beamforming design for integrated sensing and commmunications (ISAC) systems, where sensing and communications functionalities have different hierarchies. Specifically, the ISAC system first allocates resources to the higher-hierarchy functionality and opportunistically uses the remaining resources to support the lower-hierarchy one. This resource allocation problem is a nonconvex mixed-integer nonlinear program (MINLP). We propose an exact mixed-integer linear program (MILP) reformulation, leading to a globally optimal solution. In addition, we implemented three baselines for comparison, which our proposed method outperforms by more than 39%.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"29 1","pages":"180-184"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical Functionality Prioritization in Multicast ISAC: Optimal Admission Control and Discrete-Phase Beamforming\",\"authors\":\"Luis F. Abanto-Leon;Setareh Maghsudi\",\"doi\":\"10.1109/LCOMM.2024.3506696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the joint admission control and discrete-phase multicast beamforming design for integrated sensing and commmunications (ISAC) systems, where sensing and communications functionalities have different hierarchies. Specifically, the ISAC system first allocates resources to the higher-hierarchy functionality and opportunistically uses the remaining resources to support the lower-hierarchy one. This resource allocation problem is a nonconvex mixed-integer nonlinear program (MINLP). We propose an exact mixed-integer linear program (MILP) reformulation, leading to a globally optimal solution. In addition, we implemented three baselines for comparison, which our proposed method outperforms by more than 39%.\",\"PeriodicalId\":13197,\"journal\":{\"name\":\"IEEE Communications Letters\",\"volume\":\"29 1\",\"pages\":\"180-184\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10767599/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10767599/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Hierarchical Functionality Prioritization in Multicast ISAC: Optimal Admission Control and Discrete-Phase Beamforming
We investigate the joint admission control and discrete-phase multicast beamforming design for integrated sensing and commmunications (ISAC) systems, where sensing and communications functionalities have different hierarchies. Specifically, the ISAC system first allocates resources to the higher-hierarchy functionality and opportunistically uses the remaining resources to support the lower-hierarchy one. This resource allocation problem is a nonconvex mixed-integer nonlinear program (MINLP). We propose an exact mixed-integer linear program (MILP) reformulation, leading to a globally optimal solution. In addition, we implemented three baselines for comparison, which our proposed method outperforms by more than 39%.
期刊介绍:
The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.