{"title":"关于混合分辨率数据贝叶斯cram<s:1> - rao界的局限性","authors":"Yaniv Mazor;Itai E. Berman;Tirza Routtenberg","doi":"10.1109/LSP.2024.3519804","DOIUrl":null,"url":null,"abstract":"In this paper, we consider Bayesian parameter estimation in systems incorporating both analog and 1-bit quantized measurements. We develop a tractable form of the Bayesian Cram\n<inline-formula><tex-math>$\\acute{\\text{e}}$</tex-math></inline-formula>\nr-Rao Bound (BCRB) tailored for the linear-Gaussian mixed-resolution scheme. We discuss the properties of the BCRB and examine its limitations as a system design tool. In addition, we present the partially-numeric minimum-mean-squared-error (MMSE) and linear MMSE (LMMSE) estimators with a general quantization threshold. In our simulations, the BCRB is compared with the mean-squared-errors (MSEs) of the estimators for channel estimation with mixed analog-to-digital converters. The results demonstrate that the BCRB is not a tight lower bound, and it fails to accurately capture the non-monotonic behavior of the estimators' MSEs versus signal-to-noise-ratio (SNR) and their behavior regarding different resource allocations. Consequently, while the BCRB provides some valuable insights on the quantization threshold, our results demonstrate that it is not suitable as a practical tool for system design in mixed-resolution settings.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"446-450"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Limitations of the Bayesian Cramér-Rao Bound for Mixed-Resolution Data\",\"authors\":\"Yaniv Mazor;Itai E. Berman;Tirza Routtenberg\",\"doi\":\"10.1109/LSP.2024.3519804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider Bayesian parameter estimation in systems incorporating both analog and 1-bit quantized measurements. We develop a tractable form of the Bayesian Cram\\n<inline-formula><tex-math>$\\\\acute{\\\\text{e}}$</tex-math></inline-formula>\\nr-Rao Bound (BCRB) tailored for the linear-Gaussian mixed-resolution scheme. We discuss the properties of the BCRB and examine its limitations as a system design tool. In addition, we present the partially-numeric minimum-mean-squared-error (MMSE) and linear MMSE (LMMSE) estimators with a general quantization threshold. In our simulations, the BCRB is compared with the mean-squared-errors (MSEs) of the estimators for channel estimation with mixed analog-to-digital converters. The results demonstrate that the BCRB is not a tight lower bound, and it fails to accurately capture the non-monotonic behavior of the estimators' MSEs versus signal-to-noise-ratio (SNR) and their behavior regarding different resource allocations. Consequently, while the BCRB provides some valuable insights on the quantization threshold, our results demonstrate that it is not suitable as a practical tool for system design in mixed-resolution settings.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"446-450\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10806657/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10806657/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
On the Limitations of the Bayesian Cramér-Rao Bound for Mixed-Resolution Data
In this paper, we consider Bayesian parameter estimation in systems incorporating both analog and 1-bit quantized measurements. We develop a tractable form of the Bayesian Cram
$\acute{\text{e}}$
r-Rao Bound (BCRB) tailored for the linear-Gaussian mixed-resolution scheme. We discuss the properties of the BCRB and examine its limitations as a system design tool. In addition, we present the partially-numeric minimum-mean-squared-error (MMSE) and linear MMSE (LMMSE) estimators with a general quantization threshold. In our simulations, the BCRB is compared with the mean-squared-errors (MSEs) of the estimators for channel estimation with mixed analog-to-digital converters. The results demonstrate that the BCRB is not a tight lower bound, and it fails to accurately capture the non-monotonic behavior of the estimators' MSEs versus signal-to-noise-ratio (SNR) and their behavior regarding different resource allocations. Consequently, while the BCRB provides some valuable insights on the quantization threshold, our results demonstrate that it is not suitable as a practical tool for system design in mixed-resolution settings.
期刊介绍:
The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.