在轨迹优化规范中迭代地添加潜在的人类知识可以改善学习和任务结果

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Christine T. Chang;Maria P. Stull;Breanne Crockett;Emily Jensen;Clare Lohrmann;Mitchell Hebert;Bradley Hayes
{"title":"在轨迹优化规范中迭代地添加潜在的人类知识可以改善学习和任务结果","authors":"Christine T. Chang;Maria P. Stull;Breanne Crockett;Emily Jensen;Clare Lohrmann;Mitchell Hebert;Bradley Hayes","doi":"10.1109/LRA.2024.3522779","DOIUrl":null,"url":null,"abstract":"Frictionless and understandable tasking is essential for leveraging human-autonomy teaming in commercial, military, and public safety applications. Existing technology for facilitating human teaming with uncrewed aerial vehicles (UAVs), utilizing planners or trajectory optimizers that incorporate human input, introduces a usability and operator capability gap by not explicitly effecting user upskilling by promoting system understanding or predictability. Supplementing annotated waypoints with natural language guidance affords an opportunity for both. In this work we investigate one-shot versus iterative input, introducing a testbed system based on government and industry UAV planning tools that affords inputs in the form of both natural language text and drawn annotations on a terrain map. The testbed uses an LLM-based subsystem to map user inputs into additional terms for the trajectory optimization objective function. We demonstrate through a human subjects study that prompting a human teammate to iteratively add latent knowledge to a trajectory optimization aids the user in learning how the system functions, elicits more desirable robot behaviors, and ultimately achieves better task outcomes.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 2","pages":"1537-1544"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iteratively Adding Latent Human Knowledge Within Trajectory Optimization Specifications Improves Learning and Task Outcomes\",\"authors\":\"Christine T. Chang;Maria P. Stull;Breanne Crockett;Emily Jensen;Clare Lohrmann;Mitchell Hebert;Bradley Hayes\",\"doi\":\"10.1109/LRA.2024.3522779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Frictionless and understandable tasking is essential for leveraging human-autonomy teaming in commercial, military, and public safety applications. Existing technology for facilitating human teaming with uncrewed aerial vehicles (UAVs), utilizing planners or trajectory optimizers that incorporate human input, introduces a usability and operator capability gap by not explicitly effecting user upskilling by promoting system understanding or predictability. Supplementing annotated waypoints with natural language guidance affords an opportunity for both. In this work we investigate one-shot versus iterative input, introducing a testbed system based on government and industry UAV planning tools that affords inputs in the form of both natural language text and drawn annotations on a terrain map. The testbed uses an LLM-based subsystem to map user inputs into additional terms for the trajectory optimization objective function. We demonstrate through a human subjects study that prompting a human teammate to iteratively add latent knowledge to a trajectory optimization aids the user in learning how the system functions, elicits more desirable robot behaviors, and ultimately achieves better task outcomes.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 2\",\"pages\":\"1537-1544\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10816073/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10816073/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

无摩擦和可理解的任务对于在商业、军事和公共安全应用中利用人类自主团队至关重要。现有技术用于促进人类与无人驾驶飞行器(uav)的合作,利用包含人工输入的规划器或轨迹优化器,由于没有通过促进系统理解或可预测性来明确影响用户的技能提升,从而引入了可用性和操作员能力差距。用自然语言指导补充带注释的路径点,为两者提供了机会。在这项工作中,我们研究了一次性输入与迭代输入的对比,引入了一个基于政府和行业无人机规划工具的测试平台系统,该系统以自然语言文本和地形图上绘制的注释的形式提供输入。测试平台使用基于llm的子系统将用户输入映射为轨迹优化目标函数的附加项。我们通过一项人类受试者研究证明,促使人类队友迭代地将潜在知识添加到轨迹优化中,有助于用户了解系统的功能,引发更理想的机器人行为,并最终实现更好的任务结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iteratively Adding Latent Human Knowledge Within Trajectory Optimization Specifications Improves Learning and Task Outcomes
Frictionless and understandable tasking is essential for leveraging human-autonomy teaming in commercial, military, and public safety applications. Existing technology for facilitating human teaming with uncrewed aerial vehicles (UAVs), utilizing planners or trajectory optimizers that incorporate human input, introduces a usability and operator capability gap by not explicitly effecting user upskilling by promoting system understanding or predictability. Supplementing annotated waypoints with natural language guidance affords an opportunity for both. In this work we investigate one-shot versus iterative input, introducing a testbed system based on government and industry UAV planning tools that affords inputs in the form of both natural language text and drawn annotations on a terrain map. The testbed uses an LLM-based subsystem to map user inputs into additional terms for the trajectory optimization objective function. We demonstrate through a human subjects study that prompting a human teammate to iteratively add latent knowledge to a trajectory optimization aids the user in learning how the system functions, elicits more desirable robot behaviors, and ultimately achieves better task outcomes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信