自适应预测集成:改进运动预测的分布外泛化

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Jinning Li;Jiachen Li;Sangjae Bae;David Isele
{"title":"自适应预测集成:改进运动预测的分布外泛化","authors":"Jinning Li;Jiachen Li;Sangjae Bae;David Isele","doi":"10.1109/LRA.2024.3522848","DOIUrl":null,"url":null,"abstract":"Deep learning-based trajectory prediction models for autonomous driving often struggle with generalization to out-of-distribution (OOD) scenarios, sometimes performing worse than simple rule-based models. To address this limitation, we propose a novel framework, Adaptive Prediction Ensemble (APE), which integrates deep learning and rule-based prediction experts. A learned routing function, trained concurrently with the deep learning model, dynamically selects the most reliable prediction based on the input scenario. Our experiments on large-scale datasets, including Waymo Open Motion Dataset (WOMD) and Argoverse, demonstrate improvement in zero-shot generalization across datasets. We show that our method outperforms individual prediction models and other variants, particularly in long-horizon prediction and scenarios with a high proportion of OOD data. This work highlights the potential of hybrid approaches for robust and generalizable motion prediction in autonomous driving.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 2","pages":"1553-1560"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Prediction Ensemble: Improving Out-of-Distribution Generalization of Motion Forecasting\",\"authors\":\"Jinning Li;Jiachen Li;Sangjae Bae;David Isele\",\"doi\":\"10.1109/LRA.2024.3522848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning-based trajectory prediction models for autonomous driving often struggle with generalization to out-of-distribution (OOD) scenarios, sometimes performing worse than simple rule-based models. To address this limitation, we propose a novel framework, Adaptive Prediction Ensemble (APE), which integrates deep learning and rule-based prediction experts. A learned routing function, trained concurrently with the deep learning model, dynamically selects the most reliable prediction based on the input scenario. Our experiments on large-scale datasets, including Waymo Open Motion Dataset (WOMD) and Argoverse, demonstrate improvement in zero-shot generalization across datasets. We show that our method outperforms individual prediction models and other variants, particularly in long-horizon prediction and scenarios with a high proportion of OOD data. This work highlights the potential of hybrid approaches for robust and generalizable motion prediction in autonomous driving.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 2\",\"pages\":\"1553-1560\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10816209/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10816209/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

基于深度学习的自动驾驶轨迹预测模型往往难以泛化到离分布(OOD)场景,有时表现不如简单的基于规则的模型。为了解决这一限制,我们提出了一个新的框架,自适应预测集成(APE),它集成了深度学习和基于规则的预测专家。学习到的路由函数与深度学习模型同时训练,根据输入场景动态选择最可靠的预测。我们在大规模数据集上的实验,包括Waymo开放运动数据集(WOMD)和Argoverse,证明了跨数据集的零射击泛化的改进。我们表明,我们的方法优于单个预测模型和其他变体,特别是在长期预测和具有高比例OOD数据的场景中。这项工作强调了混合方法在自动驾驶中鲁棒和通用运动预测的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Prediction Ensemble: Improving Out-of-Distribution Generalization of Motion Forecasting
Deep learning-based trajectory prediction models for autonomous driving often struggle with generalization to out-of-distribution (OOD) scenarios, sometimes performing worse than simple rule-based models. To address this limitation, we propose a novel framework, Adaptive Prediction Ensemble (APE), which integrates deep learning and rule-based prediction experts. A learned routing function, trained concurrently with the deep learning model, dynamically selects the most reliable prediction based on the input scenario. Our experiments on large-scale datasets, including Waymo Open Motion Dataset (WOMD) and Argoverse, demonstrate improvement in zero-shot generalization across datasets. We show that our method outperforms individual prediction models and other variants, particularly in long-horizon prediction and scenarios with a high proportion of OOD data. This work highlights the potential of hybrid approaches for robust and generalizable motion prediction in autonomous driving.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信