Sidra Tul Muntaha;Qasim Z. Ahmed;Faheem A. Khan;Zaharias D. Zaharis;Pavlos I. Lazaridis
{"title":"基于混合区块链的多运营商资源共享与SLA管理","authors":"Sidra Tul Muntaha;Qasim Z. Ahmed;Faheem A. Khan;Zaharias D. Zaharis;Pavlos I. Lazaridis","doi":"10.1109/OJCOMS.2024.3523362","DOIUrl":null,"url":null,"abstract":"We propose a hybrid blockchain-based framework for multi-operator resource sharing and SLA management in 5G Standalone (5GSA) networks. Leveraging Hyperledger Fabric (HLF), we implement secure resource sharing between multiple seller Mobile Network Operators (MNOs) and a single buyer MNO, evaluating HLF’s performance in terms of transaction latency and throughput. The framework incorporates a two-level Multi-Leader Single-Follower (MLSF) Stackelberg game to model pricing and buying strategies. For the upper-layer game, we determine the pricing strategies of seller MNOs using Pattern Search Algorithm (PSA), Genetic Algorithm (GA), and Fmincon, comparing their performances. In the lower-layer game, we design a Lagrange multiplier-based solution for the buyer MNO’s strategy, benchmarking it against PSA, GA, and Fmincon. Our framework also employs smart contracts for SLA automation and enforcement, utilizing Ethereum and IOTA-EVM blockchains. These contracts are implemented with Hardhat and deployed across Goerli, Linea-Goerli, Sepolia, Polygon (Mumbai), and Shimmer EVM Testnets. We measure key metrics, such as transaction latency and throughput, to evaluate the performance of our SLA management system. Results demonstrate the framework’s effectiveness in enhancing resource allocation and SLA enforcement in 5G networks, highlighting the capabilities of different blockchain platforms in managing complex network operations.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"6 ","pages":"362-377"},"PeriodicalIF":6.3000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10816675","citationCount":"0","resultStr":"{\"title\":\"Hybrid Blockchain-Based Multi-Operator Resource Sharing and SLA Management\",\"authors\":\"Sidra Tul Muntaha;Qasim Z. Ahmed;Faheem A. Khan;Zaharias D. Zaharis;Pavlos I. Lazaridis\",\"doi\":\"10.1109/OJCOMS.2024.3523362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a hybrid blockchain-based framework for multi-operator resource sharing and SLA management in 5G Standalone (5GSA) networks. Leveraging Hyperledger Fabric (HLF), we implement secure resource sharing between multiple seller Mobile Network Operators (MNOs) and a single buyer MNO, evaluating HLF’s performance in terms of transaction latency and throughput. The framework incorporates a two-level Multi-Leader Single-Follower (MLSF) Stackelberg game to model pricing and buying strategies. For the upper-layer game, we determine the pricing strategies of seller MNOs using Pattern Search Algorithm (PSA), Genetic Algorithm (GA), and Fmincon, comparing their performances. In the lower-layer game, we design a Lagrange multiplier-based solution for the buyer MNO’s strategy, benchmarking it against PSA, GA, and Fmincon. Our framework also employs smart contracts for SLA automation and enforcement, utilizing Ethereum and IOTA-EVM blockchains. These contracts are implemented with Hardhat and deployed across Goerli, Linea-Goerli, Sepolia, Polygon (Mumbai), and Shimmer EVM Testnets. We measure key metrics, such as transaction latency and throughput, to evaluate the performance of our SLA management system. Results demonstrate the framework’s effectiveness in enhancing resource allocation and SLA enforcement in 5G networks, highlighting the capabilities of different blockchain platforms in managing complex network operations.\",\"PeriodicalId\":33803,\"journal\":{\"name\":\"IEEE Open Journal of the Communications Society\",\"volume\":\"6 \",\"pages\":\"362-377\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10816675\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10816675/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10816675/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Hybrid Blockchain-Based Multi-Operator Resource Sharing and SLA Management
We propose a hybrid blockchain-based framework for multi-operator resource sharing and SLA management in 5G Standalone (5GSA) networks. Leveraging Hyperledger Fabric (HLF), we implement secure resource sharing between multiple seller Mobile Network Operators (MNOs) and a single buyer MNO, evaluating HLF’s performance in terms of transaction latency and throughput. The framework incorporates a two-level Multi-Leader Single-Follower (MLSF) Stackelberg game to model pricing and buying strategies. For the upper-layer game, we determine the pricing strategies of seller MNOs using Pattern Search Algorithm (PSA), Genetic Algorithm (GA), and Fmincon, comparing their performances. In the lower-layer game, we design a Lagrange multiplier-based solution for the buyer MNO’s strategy, benchmarking it against PSA, GA, and Fmincon. Our framework also employs smart contracts for SLA automation and enforcement, utilizing Ethereum and IOTA-EVM blockchains. These contracts are implemented with Hardhat and deployed across Goerli, Linea-Goerli, Sepolia, Polygon (Mumbai), and Shimmer EVM Testnets. We measure key metrics, such as transaction latency and throughput, to evaluate the performance of our SLA management system. Results demonstrate the framework’s effectiveness in enhancing resource allocation and SLA enforcement in 5G networks, highlighting the capabilities of different blockchain platforms in managing complex network operations.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.