基于最大加线性逼近的拟合q -迭代

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Yichen Liu;Mohamad Amin Sharifi Kolarijani
{"title":"基于最大加线性逼近的拟合q -迭代","authors":"Yichen Liu;Mohamad Amin Sharifi Kolarijani","doi":"10.1109/LCSYS.2024.3520060","DOIUrl":null,"url":null,"abstract":"In this letter, we consider the application of max-plus-linear approximators for Q-function in offline reinforcement learning of discounted Markov decision processes. In particular, we incorporate these approximators to propose novel fitted Q-iteration (FQI) algorithms with provable convergence. Exploiting the compatibility of the Bellman operator with max-plus operations, we show that the max-plus-linear regression within each iteration of the proposed FQI algorithm reduces to simple max-plus matrix-vector multiplications. We also consider the variational implementation of the proposed algorithm which leads to a per-iteration complexity that is independent of the number of samples.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"3201-3206"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fitted Q-Iteration via Max-Plus-Linear Approximation\",\"authors\":\"Yichen Liu;Mohamad Amin Sharifi Kolarijani\",\"doi\":\"10.1109/LCSYS.2024.3520060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this letter, we consider the application of max-plus-linear approximators for Q-function in offline reinforcement learning of discounted Markov decision processes. In particular, we incorporate these approximators to propose novel fitted Q-iteration (FQI) algorithms with provable convergence. Exploiting the compatibility of the Bellman operator with max-plus operations, we show that the max-plus-linear regression within each iteration of the proposed FQI algorithm reduces to simple max-plus matrix-vector multiplications. We also consider the variational implementation of the proposed algorithm which leads to a per-iteration complexity that is independent of the number of samples.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"8 \",\"pages\":\"3201-3206\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10806735/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10806735/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在这封信中,我们考虑了q函数的最大加线性逼近器在贴现马尔可夫决策过程的离线强化学习中的应用。特别地,我们结合这些近似来提出新颖的具有可证明收敛性的拟合q迭代(FQI)算法。利用Bellman算子与max-plus操作的兼容性,我们证明了所提出的FQI算法的每次迭代中的max-plus线性回归可以简化为简单的max-plus矩阵向量乘法。我们还考虑了所提出算法的变分实现,这导致了独立于样本数量的每次迭代复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fitted Q-Iteration via Max-Plus-Linear Approximation
In this letter, we consider the application of max-plus-linear approximators for Q-function in offline reinforcement learning of discounted Markov decision processes. In particular, we incorporate these approximators to propose novel fitted Q-iteration (FQI) algorithms with provable convergence. Exploiting the compatibility of the Bellman operator with max-plus operations, we show that the max-plus-linear regression within each iteration of the proposed FQI algorithm reduces to simple max-plus matrix-vector multiplications. We also consider the variational implementation of the proposed algorithm which leads to a per-iteration complexity that is independent of the number of samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信