{"title":"基于最大加线性逼近的拟合q -迭代","authors":"Yichen Liu;Mohamad Amin Sharifi Kolarijani","doi":"10.1109/LCSYS.2024.3520060","DOIUrl":null,"url":null,"abstract":"In this letter, we consider the application of max-plus-linear approximators for Q-function in offline reinforcement learning of discounted Markov decision processes. In particular, we incorporate these approximators to propose novel fitted Q-iteration (FQI) algorithms with provable convergence. Exploiting the compatibility of the Bellman operator with max-plus operations, we show that the max-plus-linear regression within each iteration of the proposed FQI algorithm reduces to simple max-plus matrix-vector multiplications. We also consider the variational implementation of the proposed algorithm which leads to a per-iteration complexity that is independent of the number of samples.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"3201-3206"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fitted Q-Iteration via Max-Plus-Linear Approximation\",\"authors\":\"Yichen Liu;Mohamad Amin Sharifi Kolarijani\",\"doi\":\"10.1109/LCSYS.2024.3520060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this letter, we consider the application of max-plus-linear approximators for Q-function in offline reinforcement learning of discounted Markov decision processes. In particular, we incorporate these approximators to propose novel fitted Q-iteration (FQI) algorithms with provable convergence. Exploiting the compatibility of the Bellman operator with max-plus operations, we show that the max-plus-linear regression within each iteration of the proposed FQI algorithm reduces to simple max-plus matrix-vector multiplications. We also consider the variational implementation of the proposed algorithm which leads to a per-iteration complexity that is independent of the number of samples.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"8 \",\"pages\":\"3201-3206\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10806735/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10806735/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Fitted Q-Iteration via Max-Plus-Linear Approximation
In this letter, we consider the application of max-plus-linear approximators for Q-function in offline reinforcement learning of discounted Markov decision processes. In particular, we incorporate these approximators to propose novel fitted Q-iteration (FQI) algorithms with provable convergence. Exploiting the compatibility of the Bellman operator with max-plus operations, we show that the max-plus-linear regression within each iteration of the proposed FQI algorithm reduces to simple max-plus matrix-vector multiplications. We also consider the variational implementation of the proposed algorithm which leads to a per-iteration complexity that is independent of the number of samples.