基于鲁棒NMPC的auv非校准IBVS控制

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Hang Gu;Chao Shen
{"title":"基于鲁棒NMPC的auv非校准IBVS控制","authors":"Hang Gu;Chao Shen","doi":"10.1109/LCSYS.2024.3524063","DOIUrl":null,"url":null,"abstract":"Image-based visual servoing (IBVS) applications for autonomous underwater vehicles (AUVs) face significant challenges, including frequent recalibration and lack of constraint handling ability. This letter introduces a novel nonlinear model predictive control (NMPC) approach that integrates the Broyden method for uncalibrated IBVS and incorporates the min-max strategy to tolerate the errors in Jacobian matrix estimation. Our proposed min-max NMPC-IBVS framework estimates the Jacobian matrix online, allowing for continuous adaptation to the underwater environment without the need for prior calibration. This approach significantly enhances computational efficiency and robust control performance, enabling real-time uncalibrated applications. A rigorous proof of recursive feasibility is provided in this letter, ensuring that our NMPC-IBVS method consistently finds feasible optimal solutions that satisfy all constraints over time. Simulation results show that the proposed method is able to respect all design constraints in the AUV IBVS control and achieve robust stability with boosted computational efficiency.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"3237-3242"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust NMPC for Uncalibrated IBVS Control of AUVs\",\"authors\":\"Hang Gu;Chao Shen\",\"doi\":\"10.1109/LCSYS.2024.3524063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image-based visual servoing (IBVS) applications for autonomous underwater vehicles (AUVs) face significant challenges, including frequent recalibration and lack of constraint handling ability. This letter introduces a novel nonlinear model predictive control (NMPC) approach that integrates the Broyden method for uncalibrated IBVS and incorporates the min-max strategy to tolerate the errors in Jacobian matrix estimation. Our proposed min-max NMPC-IBVS framework estimates the Jacobian matrix online, allowing for continuous adaptation to the underwater environment without the need for prior calibration. This approach significantly enhances computational efficiency and robust control performance, enabling real-time uncalibrated applications. A rigorous proof of recursive feasibility is provided in this letter, ensuring that our NMPC-IBVS method consistently finds feasible optimal solutions that satisfy all constraints over time. Simulation results show that the proposed method is able to respect all design constraints in the AUV IBVS control and achieve robust stability with boosted computational efficiency.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"8 \",\"pages\":\"3237-3242\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10818451/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10818451/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

基于图像的视觉伺服(IBVS)应用于自主水下航行器(auv)面临着重大挑战,包括频繁的重新校准和缺乏约束处理能力。本文介绍了一种新的非线性模型预测控制(NMPC)方法,该方法集成了用于未校准IBVS的Broyden方法,并结合了最小-最大策略来容忍雅可比矩阵估计中的误差。我们提出的最小-最大NMPC-IBVS框架在线估计雅可比矩阵,允许连续适应水下环境,而无需事先校准。该方法显著提高了计算效率和鲁棒控制性能,实现了实时非校准应用。这封信中提供了递归可行性的严格证明,确保我们的NMPC-IBVS方法始终能够找到满足所有约束条件的可行最优解。仿真结果表明,该方法能够满足水下航行器控制中的所有设计约束条件,在提高计算效率的同时实现鲁棒稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust NMPC for Uncalibrated IBVS Control of AUVs
Image-based visual servoing (IBVS) applications for autonomous underwater vehicles (AUVs) face significant challenges, including frequent recalibration and lack of constraint handling ability. This letter introduces a novel nonlinear model predictive control (NMPC) approach that integrates the Broyden method for uncalibrated IBVS and incorporates the min-max strategy to tolerate the errors in Jacobian matrix estimation. Our proposed min-max NMPC-IBVS framework estimates the Jacobian matrix online, allowing for continuous adaptation to the underwater environment without the need for prior calibration. This approach significantly enhances computational efficiency and robust control performance, enabling real-time uncalibrated applications. A rigorous proof of recursive feasibility is provided in this letter, ensuring that our NMPC-IBVS method consistently finds feasible optimal solutions that satisfy all constraints over time. Simulation results show that the proposed method is able to respect all design constraints in the AUV IBVS control and achieve robust stability with boosted computational efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信