神经反馈回路安全验证的约束感知细化

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Nicholas Rober;Jonathan P. How
{"title":"神经反馈回路安全验证的约束感知细化","authors":"Nicholas Rober;Jonathan P. How","doi":"10.1109/LCSYS.2024.3518912","DOIUrl":null,"url":null,"abstract":"This letter presents a method to efficiently reduce conservativeness in reachable set over approximations (RSOAs) to verify safety for neural feedback loops (NFLs), i.e., systems that have neural networks in their control pipelines. While generating RSOAs is a tractable alternative to calculating exact reachable sets, RSOAs can be overly conservative, especially when generated over long time horizons or for highly nonlinear NN control policies. Refinement strategies such as partitioning or symbolic propagation are typically used to limit the conservativeness of RSOAs, but these approaches come with a high computational cost and often can only be used to verify safety for simple reachability problems. This letter presents Constraint-Aware Refinement for Verification (CARV): an efficient refinement strategy that reduces the conservativeness of RSOAs by explicitly using the safety constraints on the NFL. Unlike existing approaches that seek to refine RSOAs over the entire time horizon, CARV limits the computational cost of refinement by refining RSOAs only where necessary to verify safety. We demonstrate that CARV can verify the safety of an NFL where other approaches either fail or take more than \n<inline-formula> <tex-math>$60\\times $ </tex-math></inline-formula>\n longer and \n<inline-formula> <tex-math>$40\\times $ </tex-math></inline-formula>\n the memory.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"3219-3224"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constraint-Aware Refinement for Safety Verification of Neural Feedback Loops\",\"authors\":\"Nicholas Rober;Jonathan P. How\",\"doi\":\"10.1109/LCSYS.2024.3518912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter presents a method to efficiently reduce conservativeness in reachable set over approximations (RSOAs) to verify safety for neural feedback loops (NFLs), i.e., systems that have neural networks in their control pipelines. While generating RSOAs is a tractable alternative to calculating exact reachable sets, RSOAs can be overly conservative, especially when generated over long time horizons or for highly nonlinear NN control policies. Refinement strategies such as partitioning or symbolic propagation are typically used to limit the conservativeness of RSOAs, but these approaches come with a high computational cost and often can only be used to verify safety for simple reachability problems. This letter presents Constraint-Aware Refinement for Verification (CARV): an efficient refinement strategy that reduces the conservativeness of RSOAs by explicitly using the safety constraints on the NFL. Unlike existing approaches that seek to refine RSOAs over the entire time horizon, CARV limits the computational cost of refinement by refining RSOAs only where necessary to verify safety. We demonstrate that CARV can verify the safety of an NFL where other approaches either fail or take more than \\n<inline-formula> <tex-math>$60\\\\times $ </tex-math></inline-formula>\\n longer and \\n<inline-formula> <tex-math>$40\\\\times $ </tex-math></inline-formula>\\n the memory.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"8 \",\"pages\":\"3219-3224\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10804193/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10804193/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种有效降低可达集逼近(rsoa)保守性的方法,以验证神经反馈回路(nfl)的安全性,即在其控制管道中具有神经网络的系统。虽然生成rsoa是计算精确可达集的一种可处理的替代方法,但rsoa可能过于保守,特别是在长时间范围内生成或用于高度非线性的NN控制策略时。诸如分区或符号传播之类的细化策略通常用于限制rsoa的保守性,但是这些方法具有很高的计算成本,并且通常只能用于验证简单可达性问题的安全性。这封信提出了约束感知的验证细化(CARV):一种有效的细化策略,通过显式地在NFL上使用安全约束来降低rsoa的保守性。与寻求在整个时间范围内改进rsoa的现有方法不同,CARV通过仅在验证安全性所需的地方改进rsoa来限制改进的计算成本。我们证明了CARV可以验证NFL的安全性,而其他方法要么失败,要么需要超过60倍的时间和40倍的内存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constraint-Aware Refinement for Safety Verification of Neural Feedback Loops
This letter presents a method to efficiently reduce conservativeness in reachable set over approximations (RSOAs) to verify safety for neural feedback loops (NFLs), i.e., systems that have neural networks in their control pipelines. While generating RSOAs is a tractable alternative to calculating exact reachable sets, RSOAs can be overly conservative, especially when generated over long time horizons or for highly nonlinear NN control policies. Refinement strategies such as partitioning or symbolic propagation are typically used to limit the conservativeness of RSOAs, but these approaches come with a high computational cost and often can only be used to verify safety for simple reachability problems. This letter presents Constraint-Aware Refinement for Verification (CARV): an efficient refinement strategy that reduces the conservativeness of RSOAs by explicitly using the safety constraints on the NFL. Unlike existing approaches that seek to refine RSOAs over the entire time horizon, CARV limits the computational cost of refinement by refining RSOAs only where necessary to verify safety. We demonstrate that CARV can verify the safety of an NFL where other approaches either fail or take more than $60\times $ longer and $40\times $ the memory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信