基于场景的二人零和博弈均衡风险敏感计算

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Fat-Hy Omar Rajab;Jeff S. Shamma
{"title":"基于场景的二人零和博弈均衡风险敏感计算","authors":"Fat-Hy Omar Rajab;Jeff S. Shamma","doi":"10.1109/LCSYS.2024.3521360","DOIUrl":null,"url":null,"abstract":"A scenario-based risk-sensitive optimization framework is presented to approximate minimax solutions with high confidence. The approach involves first drawing several random samples from the maximizing variable, then solving a sample-based risk-sensitive optimization problem. This letter derives the sample complexity and the required risk-sensitivity level to ensure a specified tolerance and confidence in approximating the minimax solution. The derived sample complexity highlights the impact of the underlying probability distribution of the random samples. The framework is demonstrated through applications to zero-sum games and model predictive control for linear dynamical systems with bounded disturbances.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"3207-3212"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scenario-Based Risk-Sensitive Computations of Equilibria for Two-Person Zero-Sum Games\",\"authors\":\"Fat-Hy Omar Rajab;Jeff S. Shamma\",\"doi\":\"10.1109/LCSYS.2024.3521360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A scenario-based risk-sensitive optimization framework is presented to approximate minimax solutions with high confidence. The approach involves first drawing several random samples from the maximizing variable, then solving a sample-based risk-sensitive optimization problem. This letter derives the sample complexity and the required risk-sensitivity level to ensure a specified tolerance and confidence in approximating the minimax solution. The derived sample complexity highlights the impact of the underlying probability distribution of the random samples. The framework is demonstrated through applications to zero-sum games and model predictive control for linear dynamical systems with bounded disturbances.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"8 \",\"pages\":\"3207-3212\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10812000/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10812000/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于场景的风险敏感优化框架,以高置信度逼近极大极小解。该方法首先从最大化变量中抽取几个随机样本,然后解决一个基于样本的风险敏感优化问题。这封信导出了样本复杂性和所需的风险敏感性水平,以确保在近似极大极小解时具有指定的公差和置信度。导出的样本复杂度突出了随机样本的潜在概率分布的影响。通过零和博弈和具有有界扰动的线性动力系统模型预测控制的应用,证明了该框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scenario-Based Risk-Sensitive Computations of Equilibria for Two-Person Zero-Sum Games
A scenario-based risk-sensitive optimization framework is presented to approximate minimax solutions with high confidence. The approach involves first drawing several random samples from the maximizing variable, then solving a sample-based risk-sensitive optimization problem. This letter derives the sample complexity and the required risk-sensitivity level to ensure a specified tolerance and confidence in approximating the minimax solution. The derived sample complexity highlights the impact of the underlying probability distribution of the random samples. The framework is demonstrated through applications to zero-sum games and model predictive control for linear dynamical systems with bounded disturbances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信