自动驾驶汽车避障的高分辨率安全验证

IF 5.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Aliasghar Arab;Milad Khaleghi;Alireza Partovi;Alireza Abbaspour;Chaitanya Shinde;Yashar Mousavi;Vahid Azimi;Ali Karimmoddini
{"title":"自动驾驶汽车避障的高分辨率安全验证","authors":"Aliasghar Arab;Milad Khaleghi;Alireza Partovi;Alireza Abbaspour;Chaitanya Shinde;Yashar Mousavi;Vahid Azimi;Ali Karimmoddini","doi":"10.1109/OJVT.2024.3519951","DOIUrl":null,"url":null,"abstract":"This paper presents a comprehensive hazard analysis, risk assessment, and loss evaluation for an Evasive Minimum Risk Maneuvering (EMRM) system designed for autonomous vehicles. The EMRM system is designed to improve collision avoidance and mitigate loss severity by drawing inspiration from professional drivers who perform aggressive maneuvers while maintaining stability for effective risk mitigation. Recent advances in autonomous vehicle technology demonstrate a growing capability for high-performance maneuvers. This paper discusses a comprehensive safety verification process and establishes a clear safety goal to enhance the validation of the testing. The study systematically identifies potential hazards and assesses their risks to overall safety and the protection of vulnerable road users. A novel loss evaluation approach is introduced that focuses on the impact of mitigation maneuvers on loss severity. In addition, the proposed mitigation integrity level can be used to verify the minimum-risk maneuver feature. This paper applies a verification method to evasive maneuvering, contributing to the development of more reliable active safety features in autonomous driving systems.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":"6 ","pages":"276-287"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10806869","citationCount":"0","resultStr":"{\"title\":\"High-Resolution Safety Verification for Evasive Obstacle Avoidance in Autonomous Vehicles\",\"authors\":\"Aliasghar Arab;Milad Khaleghi;Alireza Partovi;Alireza Abbaspour;Chaitanya Shinde;Yashar Mousavi;Vahid Azimi;Ali Karimmoddini\",\"doi\":\"10.1109/OJVT.2024.3519951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a comprehensive hazard analysis, risk assessment, and loss evaluation for an Evasive Minimum Risk Maneuvering (EMRM) system designed for autonomous vehicles. The EMRM system is designed to improve collision avoidance and mitigate loss severity by drawing inspiration from professional drivers who perform aggressive maneuvers while maintaining stability for effective risk mitigation. Recent advances in autonomous vehicle technology demonstrate a growing capability for high-performance maneuvers. This paper discusses a comprehensive safety verification process and establishes a clear safety goal to enhance the validation of the testing. The study systematically identifies potential hazards and assesses their risks to overall safety and the protection of vulnerable road users. A novel loss evaluation approach is introduced that focuses on the impact of mitigation maneuvers on loss severity. In addition, the proposed mitigation integrity level can be used to verify the minimum-risk maneuver feature. This paper applies a verification method to evasive maneuvering, contributing to the development of more reliable active safety features in autonomous driving systems.\",\"PeriodicalId\":34270,\"journal\":{\"name\":\"IEEE Open Journal of Vehicular Technology\",\"volume\":\"6 \",\"pages\":\"276-287\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10806869\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Vehicular Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10806869/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10806869/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文针对自动驾驶汽车的规避最小风险机动(EMRM)系统进行了综合危害分析、风险评估和损失评估。EMRM系统旨在通过从专业驾驶员那里汲取灵感,在保持稳定性的同时有效地降低风险,从而提高防撞性,减轻损失的严重性。自动驾驶汽车技术的最新进展表明,其高性能机动能力正在不断增强。本文讨论了一个全面的安全验证过程,并建立了一个明确的安全目标,以提高测试的有效性。这项研究系统地确定了潜在的危险,并评估了它们对整体安全和保护弱势道路使用者的风险。提出了一种新的损失评估方法,重点研究了缓解机动对损失严重程度的影响。此外,所提出的缓解完整性等级可用于验证最小风险机动特征。本文将一种验证方法应用于规避机动,有助于开发更可靠的自动驾驶系统主动安全特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Resolution Safety Verification for Evasive Obstacle Avoidance in Autonomous Vehicles
This paper presents a comprehensive hazard analysis, risk assessment, and loss evaluation for an Evasive Minimum Risk Maneuvering (EMRM) system designed for autonomous vehicles. The EMRM system is designed to improve collision avoidance and mitigate loss severity by drawing inspiration from professional drivers who perform aggressive maneuvers while maintaining stability for effective risk mitigation. Recent advances in autonomous vehicle technology demonstrate a growing capability for high-performance maneuvers. This paper discusses a comprehensive safety verification process and establishes a clear safety goal to enhance the validation of the testing. The study systematically identifies potential hazards and assesses their risks to overall safety and the protection of vulnerable road users. A novel loss evaluation approach is introduced that focuses on the impact of mitigation maneuvers on loss severity. In addition, the proposed mitigation integrity level can be used to verify the minimum-risk maneuver feature. This paper applies a verification method to evasive maneuvering, contributing to the development of more reliable active safety features in autonomous driving systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
25
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信