{"title":"面向在线工程教育的增强现实工具的开发与可用性测试","authors":"Saurav Shrestha;Yongwei Shan;Robert Emerson;Zahrasadat Hosseini","doi":"10.1109/TLT.2024.3520413","DOIUrl":null,"url":null,"abstract":"This article introduces the development process of social presence-enabled augmented reality (SPEAR) tool, an innovative augmented reality (AR) based learning application tailored for online engineering education. SPEAR focuses on a learning module of structural beam-bending, empowering users to seamlessly integrate 3-D virtual beams into their real-world environment, using the AR Foundation framework within the Unity game engine. Learners can explore structural mechanics by manipulating loads and positions. SPEAR leverages a custom C# script based on the finite element method to offer a real-time simulation of beam deformation, accompanied by visualizations of the moment/shear diagrams and bending stresses. In addition, the integration of a cloud-based voice chat feature, photon unity networking 2, enhances social presence, fostering collaborative learning. Usability testing conducted with extended reality developers and structural engineers, utilizing the system usability scale, confirmed SPEAR's user-friendliness and intuitive interface. Results indicate high levels of participant satisfaction, validating its design and functionality. This study contributes to the field by highlighting SPEAR's pedagogical potential to enhance online engineering education through immersive AR experiences and social interaction. It offers a promising avenue for improving student engagement, comprehension, and performance. In addition, SPEAR facilitates future research into new learning theories and materials design strategies. Its versatility makes it a valuable tool for innovative online education approaches, potentially revolutionizing the learning experiences for students worldwide.","PeriodicalId":49191,"journal":{"name":"IEEE Transactions on Learning Technologies","volume":"18 ","pages":"13-24"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing and Usability Testing of an Augmented Reality Tool for Online Engineering Education\",\"authors\":\"Saurav Shrestha;Yongwei Shan;Robert Emerson;Zahrasadat Hosseini\",\"doi\":\"10.1109/TLT.2024.3520413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article introduces the development process of social presence-enabled augmented reality (SPEAR) tool, an innovative augmented reality (AR) based learning application tailored for online engineering education. SPEAR focuses on a learning module of structural beam-bending, empowering users to seamlessly integrate 3-D virtual beams into their real-world environment, using the AR Foundation framework within the Unity game engine. Learners can explore structural mechanics by manipulating loads and positions. SPEAR leverages a custom C# script based on the finite element method to offer a real-time simulation of beam deformation, accompanied by visualizations of the moment/shear diagrams and bending stresses. In addition, the integration of a cloud-based voice chat feature, photon unity networking 2, enhances social presence, fostering collaborative learning. Usability testing conducted with extended reality developers and structural engineers, utilizing the system usability scale, confirmed SPEAR's user-friendliness and intuitive interface. Results indicate high levels of participant satisfaction, validating its design and functionality. This study contributes to the field by highlighting SPEAR's pedagogical potential to enhance online engineering education through immersive AR experiences and social interaction. It offers a promising avenue for improving student engagement, comprehension, and performance. In addition, SPEAR facilitates future research into new learning theories and materials design strategies. Its versatility makes it a valuable tool for innovative online education approaches, potentially revolutionizing the learning experiences for students worldwide.\",\"PeriodicalId\":49191,\"journal\":{\"name\":\"IEEE Transactions on Learning Technologies\",\"volume\":\"18 \",\"pages\":\"13-24\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Learning Technologies\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10816555/\",\"RegionNum\":3,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Learning Technologies","FirstCategoryId":"95","ListUrlMain":"https://ieeexplore.ieee.org/document/10816555/","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Developing and Usability Testing of an Augmented Reality Tool for Online Engineering Education
This article introduces the development process of social presence-enabled augmented reality (SPEAR) tool, an innovative augmented reality (AR) based learning application tailored for online engineering education. SPEAR focuses on a learning module of structural beam-bending, empowering users to seamlessly integrate 3-D virtual beams into their real-world environment, using the AR Foundation framework within the Unity game engine. Learners can explore structural mechanics by manipulating loads and positions. SPEAR leverages a custom C# script based on the finite element method to offer a real-time simulation of beam deformation, accompanied by visualizations of the moment/shear diagrams and bending stresses. In addition, the integration of a cloud-based voice chat feature, photon unity networking 2, enhances social presence, fostering collaborative learning. Usability testing conducted with extended reality developers and structural engineers, utilizing the system usability scale, confirmed SPEAR's user-friendliness and intuitive interface. Results indicate high levels of participant satisfaction, validating its design and functionality. This study contributes to the field by highlighting SPEAR's pedagogical potential to enhance online engineering education through immersive AR experiences and social interaction. It offers a promising avenue for improving student engagement, comprehension, and performance. In addition, SPEAR facilitates future research into new learning theories and materials design strategies. Its versatility makes it a valuable tool for innovative online education approaches, potentially revolutionizing the learning experiences for students worldwide.
期刊介绍:
The IEEE Transactions on Learning Technologies covers all advances in learning technologies and their applications, including but not limited to the following topics: innovative online learning systems; intelligent tutors; educational games; simulation systems for education and training; collaborative learning tools; learning with mobile devices; wearable devices and interfaces for learning; personalized and adaptive learning systems; tools for formative and summative assessment; tools for learning analytics and educational data mining; ontologies for learning systems; standards and web services that support learning; authoring tools for learning materials; computer support for peer tutoring; learning via computer-mediated inquiry, field, and lab work; social learning techniques; social networks and infrastructures for learning and knowledge sharing; and creation and management of learning objects.