Haonan Shi;Luzheng Bi;Zhenge Yang;Haorui Ge;Weijie Fei;Ling Wang
{"title":"基于博弈论的脑控地空协同自治系统自适应模型预测控制框架","authors":"Haonan Shi;Luzheng Bi;Zhenge Yang;Haorui Ge;Weijie Fei;Ling Wang","doi":"10.1109/LRA.2024.3522780","DOIUrl":null,"url":null,"abstract":"Brain-machine interfaces (BMIs) can enable humans to bypass the peripheral nervous system and directly control devices through the central nervous system. In this way, operators' hands are freed up, allowing them to interact with other devices, thus enabling multitasking operations. In this letter, to improve the performance of air-ground collaborative systems, we propose an adaptive model prediction control framework of brain-controlled air-ground collaboration systems, which consists of a BMI with a probabilistic output model, an interface model based on fuzzy logic, and an adaptive model-predictive-control shared controller based on game theory. We establish a human-in-the-loop experimental platform to validate the proposed method by trajectory tracking and obstacle avoidance scenarios. The experimental results show the effectiveness of the proposed method in improving performance and decreasing operators' workload. This work can contribute to the research and development of air-ground collaboration and provide new insights into the study of human-machine integration.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 2","pages":"1577-1584"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Model Prediction Control Framework With Game Theory for Brain-Controlled Air-Ground Collaborative Autonomous System\",\"authors\":\"Haonan Shi;Luzheng Bi;Zhenge Yang;Haorui Ge;Weijie Fei;Ling Wang\",\"doi\":\"10.1109/LRA.2024.3522780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain-machine interfaces (BMIs) can enable humans to bypass the peripheral nervous system and directly control devices through the central nervous system. In this way, operators' hands are freed up, allowing them to interact with other devices, thus enabling multitasking operations. In this letter, to improve the performance of air-ground collaborative systems, we propose an adaptive model prediction control framework of brain-controlled air-ground collaboration systems, which consists of a BMI with a probabilistic output model, an interface model based on fuzzy logic, and an adaptive model-predictive-control shared controller based on game theory. We establish a human-in-the-loop experimental platform to validate the proposed method by trajectory tracking and obstacle avoidance scenarios. The experimental results show the effectiveness of the proposed method in improving performance and decreasing operators' workload. This work can contribute to the research and development of air-ground collaboration and provide new insights into the study of human-machine integration.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 2\",\"pages\":\"1577-1584\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10816148/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10816148/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
Adaptive Model Prediction Control Framework With Game Theory for Brain-Controlled Air-Ground Collaborative Autonomous System
Brain-machine interfaces (BMIs) can enable humans to bypass the peripheral nervous system and directly control devices through the central nervous system. In this way, operators' hands are freed up, allowing them to interact with other devices, thus enabling multitasking operations. In this letter, to improve the performance of air-ground collaborative systems, we propose an adaptive model prediction control framework of brain-controlled air-ground collaboration systems, which consists of a BMI with a probabilistic output model, an interface model based on fuzzy logic, and an adaptive model-predictive-control shared controller based on game theory. We establish a human-in-the-loop experimental platform to validate the proposed method by trajectory tracking and obstacle avoidance scenarios. The experimental results show the effectiveness of the proposed method in improving performance and decreasing operators' workload. This work can contribute to the research and development of air-ground collaboration and provide new insights into the study of human-machine integration.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.