基于顺序定义的两亲交替偶氮类化合物动态手性自组装的光可控Förster共振能量转移

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-01-08 DOI:10.1002/smll.202408147
Haibao Jin, Fan Liu, Pengchao Wu, Zichao Sun, Pengliang Sui, Yuanyuan Cao, Yongfeng Zhou, Shaoliang Lin
{"title":"基于顺序定义的两亲交替偶氮类化合物动态手性自组装的光可控Förster共振能量转移","authors":"Haibao Jin,&nbsp;Fan Liu,&nbsp;Pengchao Wu,&nbsp;Zichao Sun,&nbsp;Pengliang Sui,&nbsp;Yuanyuan Cao,&nbsp;Yongfeng Zhou,&nbsp;Shaoliang Lin","doi":"10.1002/smll.202408147","DOIUrl":null,"url":null,"abstract":"<p>Endowing biomimetic sequence–controlled polymers with chiral functionality to construct stimuli-responsive chiral materials offers a promising approach for innovative chiroptical switch, but it remains challenging. Herein, it is reported that the self-assembly of sequence-defined chiral amphiphilic alternating azopeptoids to generate photo-responsive and ultrathin bilayer peptoidosomes with a vesicular thickness of ≈1.50 nm and a diameter of around ≈290 nm. The photoisomerization of azobenzene moiety facilitates a reversible structural transformation from isotropic peptoidosomes to anisotropic 1D helical nanoribbons (≈80 nm width) under the alternating irradiation with UV and visible lights, consequently leading to the chirality expression and transfer from chiral asymmetric center to achiral azobenzene units. As a biomimetic model with deformation-induced energy transfer, a non-invasive azobenzene-based Förster resonance energy transfer system is unprecedentedly constructed via the introduction of a fluorescent donor of pyrene derivatives and sequentially photo-regulated the donor/acceptor ratio, displaying a reversible gradient fluorescent color variation from blue to yellow (a broad Stokes shift of ≈200 nm) and a high-efficient energy transfer efficiency of 97.2%. The photo-controllable photoluminescence phenomenon endows these chiral aggregates with a proof-of-concept application on multi-colored information encryption. This work provides a prospective strategy to fabricate stimuli-responsive chiral biomimetic materials with a potential on the light-controllable switches.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 6","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photo-Controllable Förster Resonance Energy Transfer Based on Dynamic Chiral Self-Assembly of Sequence-Defined Amphiphilic Alternating Azopeptoids\",\"authors\":\"Haibao Jin,&nbsp;Fan Liu,&nbsp;Pengchao Wu,&nbsp;Zichao Sun,&nbsp;Pengliang Sui,&nbsp;Yuanyuan Cao,&nbsp;Yongfeng Zhou,&nbsp;Shaoliang Lin\",\"doi\":\"10.1002/smll.202408147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Endowing biomimetic sequence–controlled polymers with chiral functionality to construct stimuli-responsive chiral materials offers a promising approach for innovative chiroptical switch, but it remains challenging. Herein, it is reported that the self-assembly of sequence-defined chiral amphiphilic alternating azopeptoids to generate photo-responsive and ultrathin bilayer peptoidosomes with a vesicular thickness of ≈1.50 nm and a diameter of around ≈290 nm. The photoisomerization of azobenzene moiety facilitates a reversible structural transformation from isotropic peptoidosomes to anisotropic 1D helical nanoribbons (≈80 nm width) under the alternating irradiation with UV and visible lights, consequently leading to the chirality expression and transfer from chiral asymmetric center to achiral azobenzene units. As a biomimetic model with deformation-induced energy transfer, a non-invasive azobenzene-based Förster resonance energy transfer system is unprecedentedly constructed via the introduction of a fluorescent donor of pyrene derivatives and sequentially photo-regulated the donor/acceptor ratio, displaying a reversible gradient fluorescent color variation from blue to yellow (a broad Stokes shift of ≈200 nm) and a high-efficient energy transfer efficiency of 97.2%. The photo-controllable photoluminescence phenomenon endows these chiral aggregates with a proof-of-concept application on multi-colored information encryption. This work provides a prospective strategy to fabricate stimuli-responsive chiral biomimetic materials with a potential on the light-controllable switches.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 6\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202408147\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202408147","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

赋予具有手性功能的仿生序列控制聚合物来构建刺激响应性手性材料为创新的手性开关提供了一种很有前途的方法,但它仍然具有挑战性。本文报道了序列定义的手性两亲性交替偶氮肽体自组装生成光响应的超薄双层肽体,其囊泡厚度约为1.50 nm,直径约为≈290 nm。偶氮苯部分的光异构化使其在紫外和可见光交替照射下,由各向同性肽质体向各向异性一维螺旋纳米带(约80 nm宽)可逆转变,从而导致手性表达和从手性不对称中心向非手性偶氮苯单元转移。作为一种具有变形诱导能量转移的仿生模型,史无前例地通过引入芘衍生物的荧光供体,构建了基于偶氮苯的无创Förster共振能量转移系统,并对供体/受体比例进行了顺序光调控,显示出从蓝色到黄色的可逆梯度荧光变化(宽Stokes位移≈200 nm)和97.2%的高效能量转移效率。光可控的光致发光现象使这些手性聚集体在多色信息加密方面具有概念验证的应用。本研究为制备具有光控开关潜力的刺激响应性手性仿生材料提供了一种前瞻性策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Photo-Controllable Förster Resonance Energy Transfer Based on Dynamic Chiral Self-Assembly of Sequence-Defined Amphiphilic Alternating Azopeptoids

Photo-Controllable Förster Resonance Energy Transfer Based on Dynamic Chiral Self-Assembly of Sequence-Defined Amphiphilic Alternating Azopeptoids

Endowing biomimetic sequence–controlled polymers with chiral functionality to construct stimuli-responsive chiral materials offers a promising approach for innovative chiroptical switch, but it remains challenging. Herein, it is reported that the self-assembly of sequence-defined chiral amphiphilic alternating azopeptoids to generate photo-responsive and ultrathin bilayer peptoidosomes with a vesicular thickness of ≈1.50 nm and a diameter of around ≈290 nm. The photoisomerization of azobenzene moiety facilitates a reversible structural transformation from isotropic peptoidosomes to anisotropic 1D helical nanoribbons (≈80 nm width) under the alternating irradiation with UV and visible lights, consequently leading to the chirality expression and transfer from chiral asymmetric center to achiral azobenzene units. As a biomimetic model with deformation-induced energy transfer, a non-invasive azobenzene-based Förster resonance energy transfer system is unprecedentedly constructed via the introduction of a fluorescent donor of pyrene derivatives and sequentially photo-regulated the donor/acceptor ratio, displaying a reversible gradient fluorescent color variation from blue to yellow (a broad Stokes shift of ≈200 nm) and a high-efficient energy transfer efficiency of 97.2%. The photo-controllable photoluminescence phenomenon endows these chiral aggregates with a proof-of-concept application on multi-colored information encryption. This work provides a prospective strategy to fabricate stimuli-responsive chiral biomimetic materials with a potential on the light-controllable switches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信