{"title":"非激酶和激酶的细胞活性、精氨酸靶向不可逆共价抑制剂","authors":"Shao Q. Yao, Peng Chen, Lu Wang, Xuan Wang, Jie Sun, Fengfei Miao, Zuqin Wang, Fang Yang, Menghua Xiang, Mingxi Gu, Shengrong Li, Jianzhong Zhang, Peiyan Yuan, Xiaoyun Lu, Zhi-Min Zhang, Liqian Gao","doi":"10.1002/anie.202422372","DOIUrl":null,"url":null,"abstract":"Targeted covalent inhibitors (TCIs) play an essential role in the fields of kinase research and drug discovery. Most existing TCIs are however cysteine- or lysine-reactive, thus severely limiting their potential applications. New types of TCIs capable of covalently targeting other nucleophilic amino acids that are readily available in proteins are urgently needed. We report herein a glyoxal-based, arginine-reactive strategy to generate potent and selective small-molecule TCIs of Mcl-1 (an important anti-apoptotic protein) by selectively targeting the conserved arginine (R263) in the protein. We further validated the generality of this strategy by developing glyoxal-based, irreversible covalent inhibitors of AURKA (a cancer-related kinase) that showed exclusive reactivity with a solvent-exposed arginine (R220) of this enzyme. We showed the resulting compounds were potent, selective and cell-active, capable of covalently engaging endogenous AURKA in MV-4-11 cells with long residence time. Finally, we showed the potential application of glyoxal-based TCIs in targeting an acquired drug-resistance mutant of ALK kinase (G1202R).","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"44 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cell-Active, Arginine-Targeting Irreversible Covalent Inhibitors for Non-Kinases and Kinases\",\"authors\":\"Shao Q. Yao, Peng Chen, Lu Wang, Xuan Wang, Jie Sun, Fengfei Miao, Zuqin Wang, Fang Yang, Menghua Xiang, Mingxi Gu, Shengrong Li, Jianzhong Zhang, Peiyan Yuan, Xiaoyun Lu, Zhi-Min Zhang, Liqian Gao\",\"doi\":\"10.1002/anie.202422372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Targeted covalent inhibitors (TCIs) play an essential role in the fields of kinase research and drug discovery. Most existing TCIs are however cysteine- or lysine-reactive, thus severely limiting their potential applications. New types of TCIs capable of covalently targeting other nucleophilic amino acids that are readily available in proteins are urgently needed. We report herein a glyoxal-based, arginine-reactive strategy to generate potent and selective small-molecule TCIs of Mcl-1 (an important anti-apoptotic protein) by selectively targeting the conserved arginine (R263) in the protein. We further validated the generality of this strategy by developing glyoxal-based, irreversible covalent inhibitors of AURKA (a cancer-related kinase) that showed exclusive reactivity with a solvent-exposed arginine (R220) of this enzyme. We showed the resulting compounds were potent, selective and cell-active, capable of covalently engaging endogenous AURKA in MV-4-11 cells with long residence time. Finally, we showed the potential application of glyoxal-based TCIs in targeting an acquired drug-resistance mutant of ALK kinase (G1202R).\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202422372\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202422372","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Cell-Active, Arginine-Targeting Irreversible Covalent Inhibitors for Non-Kinases and Kinases
Targeted covalent inhibitors (TCIs) play an essential role in the fields of kinase research and drug discovery. Most existing TCIs are however cysteine- or lysine-reactive, thus severely limiting their potential applications. New types of TCIs capable of covalently targeting other nucleophilic amino acids that are readily available in proteins are urgently needed. We report herein a glyoxal-based, arginine-reactive strategy to generate potent and selective small-molecule TCIs of Mcl-1 (an important anti-apoptotic protein) by selectively targeting the conserved arginine (R263) in the protein. We further validated the generality of this strategy by developing glyoxal-based, irreversible covalent inhibitors of AURKA (a cancer-related kinase) that showed exclusive reactivity with a solvent-exposed arginine (R220) of this enzyme. We showed the resulting compounds were potent, selective and cell-active, capable of covalently engaging endogenous AURKA in MV-4-11 cells with long residence time. Finally, we showed the potential application of glyoxal-based TCIs in targeting an acquired drug-resistance mutant of ALK kinase (G1202R).
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.