向列型液滴在水面上的循环溶解性使其小型化

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Vinod Babasaheb Vanarse, Siddharth Thakur, Dipankar Bandyopadhyay
{"title":"向列型液滴在水面上的循环溶解性使其小型化","authors":"Vinod Babasaheb Vanarse, Siddharth Thakur, Dipankar Bandyopadhyay","doi":"10.1021/acs.langmuir.4c04647","DOIUrl":null,"url":null,"abstract":"Self-organized contact line instabilities (CLI) of a macroscopic liquid crystal (LC) droplet can be an ingenious pathway to generate a large collection of miniaturized LC drops. For example, when a larger drop of volatile solvent (e.g., hexane) is dispensed near a smaller LC drop resting on a soft and slippery surface of a nonsolvent (e.g., water), unique self-organized locomotion in the form of a twin vortex has been observed within the droplets. This phenomenon is driven by the rapid counter diffusion of hexane and LC between the two droplets, resulting in the formation of a pair of vortices within the droplets before instigating a CLI at the three-phase contact line (TPCL) of the LC droplet. Initially, the higher Laplace pressure inside the LC droplet (<i>P</i><sub>L,5CB</sub>) due to a net pressure gradient, <i>P</i><sub>L,5CB</sub> &gt; <i>P</i><sub>L,Hex</sub>, drives the LC toward hexane. However, as the volatile solvent droplet shrinks due to rapid evaporation, a flow reversal happens owing to <i>P</i><sub>L,5CB</sub> &lt; <i>P</i><sub>L,Hex</sub>. Subsequently, the diffusion of hexane into the LC droplet and its subsequent evaporation manifest a periodic oscillatory CLI expansion and retraction at the TPCL, which in turn form periodic finger-like structures. Following this, the fingers with a higher aspect ratio break into an array of miniaturized satellite LC droplets undergoing Rayleigh–Plateau instability (RPI). The observed deviation in the normalized satellite droplet spacing<i></i><span style=\"color: inherit;\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;mi&gt;&amp;#x3BB;&lt;/mi&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mrow&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;mi&gt;CB&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;&amp;#x223C;&lt;/mo&gt;&lt;mn&gt;3.15&lt;/mn&gt;&lt;msqrt&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msqrt&gt;&lt;mi&gt;&amp;#x3C0;&lt;/mi&gt;&lt;/math&gt;' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 10.248em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 8.404em; height: 0px; font-size: 122%;\"><span style=\"position: absolute; clip: rect(1.232em, 1008.4em, 2.615em, -999.997em); top: -2.2em; left: 0em;\"><span><span style=\"font-family: MathJax_Math-italic;\">λ</span><span style=\"font-family: MathJax_Main;\">/</span><span><span style=\"display: inline-block; position: relative; width: 2.359em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.179em, 1000.77em, 4.152em, -999.997em); top: -3.993em; left: 0em;\"><span style=\"font-family: MathJax_Math-italic;\">R</span><span style=\"display: inline-block; width: 0px; height: 3.998em;\"></span></span><span style=\"position: absolute; top: -3.84em; left: 0.771em;\"><span><span style=\"font-size: 70.7%; font-family: MathJax_Main;\">5</span><span style=\"font-size: 70.7%; font-family: MathJax_Main; padding-left: 0.259em;\">CB</span></span><span style=\"display: inline-block; width: 0px; height: 3.998em;\"></span></span></span></span><span style=\"font-family: MathJax_Main; padding-left: 0.259em;\">∼</span><span style=\"font-family: MathJax_Main; padding-left: 0.259em;\">3.15</span><span><span style=\"display: inline-block; position: relative; width: 1.335em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.179em, 1000.46em, 4.152em, -999.997em); top: -3.993em; left: 0.822em;\"><span><span style=\"font-family: MathJax_Main;\">2</span></span><span style=\"display: inline-block; width: 0px; height: 3.998em;\"></span></span><span style=\"position: absolute; clip: rect(3.537em, 1000.51em, 3.896em, -999.997em); top: -4.557em; left: 0.822em;\"><span style=\"font-family: MathJax_Main;\">–</span><span style=\"display: inline-block; width: 0px; height: 3.998em;\"></span></span><span style=\"position: absolute; clip: rect(3.025em, 1000.87em, 4.357em, -999.997em); top: -4.045em; left: 0em;\"><span style=\"font-family: MathJax_Main;\">√</span><span style=\"display: inline-block; width: 0px; height: 3.998em;\"></span></span></span></span><span style=\"font-family: MathJax_Math-italic;\">π<span style=\"display: inline-block; overflow: hidden; height: 1px; width: 0.003em;\"></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.205em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.372em; border-left: 0px solid; width: 0px; height: 1.441em;\"></span></span></nobr><span role=\"presentation\"><math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>λ</mi><mo>/</mo><msub><mi>R</mi><mrow><mn>5</mn><mi>CB</mi></mrow></msub><mo>∼</mo><mn>3.15</mn><msqrt><mn>2</mn></msqrt><mi>π</mi></math></span></span><script type=\"math/mml\"><math display=\"inline\"><mi>λ</mi><mo>/</mo><msub><mi>R</mi><mrow><mn>5</mn><mi>CB</mi></mrow></msub><mo>∼</mo><mn>3.15</mn><msqrt><mn>2</mn></msqrt><mi>π</mi></math></script> compared to theoretical value <i></i><span style=\"color: inherit;\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;mo&gt;&amp;#x223C;&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;msqrt&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msqrt&gt;&lt;mi&gt;&amp;#x3C0;&lt;/mi&gt;&lt;/math&gt;' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 4.203em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 3.435em; height: 0px; font-size: 122%;\"><span style=\"position: absolute; clip: rect(1.232em, 1003.43em, 2.513em, -999.997em); top: -2.2em; left: 0em;\"><span><span style=\"font-family: MathJax_Main;\">∼</span><span style=\"font-family: MathJax_Main; padding-left: 0.259em;\">2</span><span><span style=\"display: inline-block; position: relative; width: 1.335em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.179em, 1000.46em, 4.152em, -999.997em); top: -3.993em; left: 0.822em;\"><span><span style=\"font-family: MathJax_Main;\">2</span></span><span style=\"display: inline-block; width: 0px; height: 3.998em;\"></span></span><span style=\"position: absolute; clip: rect(3.537em, 1000.51em, 3.896em, -999.997em); top: -4.557em; left: 0.822em;\"><span style=\"font-family: MathJax_Main;\">–</span><span style=\"display: inline-block; width: 0px; height: 3.998em;\"></span></span><span style=\"position: absolute; clip: rect(3.025em, 1000.87em, 4.357em, -999.997em); top: -4.045em; left: 0em;\"><span style=\"font-family: MathJax_Main;\">√</span><span style=\"display: inline-block; width: 0px; height: 3.998em;\"></span></span></span></span><span style=\"font-family: MathJax_Math-italic;\">π<span style=\"display: inline-block; overflow: hidden; height: 1px; width: 0.003em;\"></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.205em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.247em; border-left: 0px solid; width: 0px; height: 1.378em;\"></span></span></nobr><span role=\"presentation\"><math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>∼</mo><mn>2</mn><msqrt><mn>2</mn></msqrt><mi>π</mi></math></span></span><script type=\"math/mml\"><math display=\"inline\"><mo>∼</mo><mn>2</mn><msqrt><mn>2</mn></msqrt><mi>π</mi></math></script> affirm the stabilizing influence of LC elasticity in such fingers, where λ and <i>R</i><sub>5CB</sub> are experimentally calculated droplet spacing and 5CB droplet radius. Control experiments elucidate the specific contributions of capillary, drag, solutal Marangoni, and osmotic forces to the 5CB droplet locomotion phenomena. The experimentally and analytically consistent demonstration also supports and predicts pressure drop-induced droplet velocities as <i>v</i> ∼ <i>t</i><sup>1.16</sup>.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"39 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recirculatory Solvotaxis of a Nematic Droplet on Water Surface Enabling Miniaturization\",\"authors\":\"Vinod Babasaheb Vanarse, Siddharth Thakur, Dipankar Bandyopadhyay\",\"doi\":\"10.1021/acs.langmuir.4c04647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Self-organized contact line instabilities (CLI) of a macroscopic liquid crystal (LC) droplet can be an ingenious pathway to generate a large collection of miniaturized LC drops. For example, when a larger drop of volatile solvent (e.g., hexane) is dispensed near a smaller LC drop resting on a soft and slippery surface of a nonsolvent (e.g., water), unique self-organized locomotion in the form of a twin vortex has been observed within the droplets. This phenomenon is driven by the rapid counter diffusion of hexane and LC between the two droplets, resulting in the formation of a pair of vortices within the droplets before instigating a CLI at the three-phase contact line (TPCL) of the LC droplet. Initially, the higher Laplace pressure inside the LC droplet (<i>P</i><sub>L,5CB</sub>) due to a net pressure gradient, <i>P</i><sub>L,5CB</sub> &gt; <i>P</i><sub>L,Hex</sub>, drives the LC toward hexane. However, as the volatile solvent droplet shrinks due to rapid evaporation, a flow reversal happens owing to <i>P</i><sub>L,5CB</sub> &lt; <i>P</i><sub>L,Hex</sub>. Subsequently, the diffusion of hexane into the LC droplet and its subsequent evaporation manifest a periodic oscillatory CLI expansion and retraction at the TPCL, which in turn form periodic finger-like structures. Following this, the fingers with a higher aspect ratio break into an array of miniaturized satellite LC droplets undergoing Rayleigh–Plateau instability (RPI). The observed deviation in the normalized satellite droplet spacing<i></i><span style=\\\"color: inherit;\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"&gt;&lt;mi&gt;&amp;#x3BB;&lt;/mi&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mrow&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;mi&gt;CB&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;&amp;#x223C;&lt;/mo&gt;&lt;mn&gt;3.15&lt;/mn&gt;&lt;msqrt&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msqrt&gt;&lt;mi&gt;&amp;#x3C0;&lt;/mi&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"position: relative;\\\" tabindex=\\\"0\\\"><nobr aria-hidden=\\\"true\\\"><span style=\\\"width: 10.248em; display: inline-block;\\\"><span style=\\\"display: inline-block; position: relative; width: 8.404em; height: 0px; font-size: 122%;\\\"><span style=\\\"position: absolute; clip: rect(1.232em, 1008.4em, 2.615em, -999.997em); top: -2.2em; left: 0em;\\\"><span><span style=\\\"font-family: MathJax_Math-italic;\\\">λ</span><span style=\\\"font-family: MathJax_Main;\\\">/</span><span><span style=\\\"display: inline-block; position: relative; width: 2.359em; height: 0px;\\\"><span style=\\\"position: absolute; clip: rect(3.179em, 1000.77em, 4.152em, -999.997em); top: -3.993em; left: 0em;\\\"><span style=\\\"font-family: MathJax_Math-italic;\\\">R</span><span style=\\\"display: inline-block; width: 0px; height: 3.998em;\\\"></span></span><span style=\\\"position: absolute; top: -3.84em; left: 0.771em;\\\"><span><span style=\\\"font-size: 70.7%; font-family: MathJax_Main;\\\">5</span><span style=\\\"font-size: 70.7%; font-family: MathJax_Main; padding-left: 0.259em;\\\">CB</span></span><span style=\\\"display: inline-block; width: 0px; height: 3.998em;\\\"></span></span></span></span><span style=\\\"font-family: MathJax_Main; padding-left: 0.259em;\\\">∼</span><span style=\\\"font-family: MathJax_Main; padding-left: 0.259em;\\\">3.15</span><span><span style=\\\"display: inline-block; position: relative; width: 1.335em; height: 0px;\\\"><span style=\\\"position: absolute; clip: rect(3.179em, 1000.46em, 4.152em, -999.997em); top: -3.993em; left: 0.822em;\\\"><span><span style=\\\"font-family: MathJax_Main;\\\">2</span></span><span style=\\\"display: inline-block; width: 0px; height: 3.998em;\\\"></span></span><span style=\\\"position: absolute; clip: rect(3.537em, 1000.51em, 3.896em, -999.997em); top: -4.557em; left: 0.822em;\\\"><span style=\\\"font-family: MathJax_Main;\\\">–</span><span style=\\\"display: inline-block; width: 0px; height: 3.998em;\\\"></span></span><span style=\\\"position: absolute; clip: rect(3.025em, 1000.87em, 4.357em, -999.997em); top: -4.045em; left: 0em;\\\"><span style=\\\"font-family: MathJax_Main;\\\">√</span><span style=\\\"display: inline-block; width: 0px; height: 3.998em;\\\"></span></span></span></span><span style=\\\"font-family: MathJax_Math-italic;\\\">π<span style=\\\"display: inline-block; overflow: hidden; height: 1px; width: 0.003em;\\\"></span></span></span><span style=\\\"display: inline-block; width: 0px; height: 2.205em;\\\"></span></span></span><span style=\\\"display: inline-block; overflow: hidden; vertical-align: -0.372em; border-left: 0px solid; width: 0px; height: 1.441em;\\\"></span></span></nobr><span role=\\\"presentation\\\"><math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>λ</mi><mo>/</mo><msub><mi>R</mi><mrow><mn>5</mn><mi>CB</mi></mrow></msub><mo>∼</mo><mn>3.15</mn><msqrt><mn>2</mn></msqrt><mi>π</mi></math></span></span><script type=\\\"math/mml\\\"><math display=\\\"inline\\\"><mi>λ</mi><mo>/</mo><msub><mi>R</mi><mrow><mn>5</mn><mi>CB</mi></mrow></msub><mo>∼</mo><mn>3.15</mn><msqrt><mn>2</mn></msqrt><mi>π</mi></math></script> compared to theoretical value <i></i><span style=\\\"color: inherit;\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"&gt;&lt;mo&gt;&amp;#x223C;&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;msqrt&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msqrt&gt;&lt;mi&gt;&amp;#x3C0;&lt;/mi&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"position: relative;\\\" tabindex=\\\"0\\\"><nobr aria-hidden=\\\"true\\\"><span style=\\\"width: 4.203em; display: inline-block;\\\"><span style=\\\"display: inline-block; position: relative; width: 3.435em; height: 0px; font-size: 122%;\\\"><span style=\\\"position: absolute; clip: rect(1.232em, 1003.43em, 2.513em, -999.997em); top: -2.2em; left: 0em;\\\"><span><span style=\\\"font-family: MathJax_Main;\\\">∼</span><span style=\\\"font-family: MathJax_Main; padding-left: 0.259em;\\\">2</span><span><span style=\\\"display: inline-block; position: relative; width: 1.335em; height: 0px;\\\"><span style=\\\"position: absolute; clip: rect(3.179em, 1000.46em, 4.152em, -999.997em); top: -3.993em; left: 0.822em;\\\"><span><span style=\\\"font-family: MathJax_Main;\\\">2</span></span><span style=\\\"display: inline-block; width: 0px; height: 3.998em;\\\"></span></span><span style=\\\"position: absolute; clip: rect(3.537em, 1000.51em, 3.896em, -999.997em); top: -4.557em; left: 0.822em;\\\"><span style=\\\"font-family: MathJax_Main;\\\">–</span><span style=\\\"display: inline-block; width: 0px; height: 3.998em;\\\"></span></span><span style=\\\"position: absolute; clip: rect(3.025em, 1000.87em, 4.357em, -999.997em); top: -4.045em; left: 0em;\\\"><span style=\\\"font-family: MathJax_Main;\\\">√</span><span style=\\\"display: inline-block; width: 0px; height: 3.998em;\\\"></span></span></span></span><span style=\\\"font-family: MathJax_Math-italic;\\\">π<span style=\\\"display: inline-block; overflow: hidden; height: 1px; width: 0.003em;\\\"></span></span></span><span style=\\\"display: inline-block; width: 0px; height: 2.205em;\\\"></span></span></span><span style=\\\"display: inline-block; overflow: hidden; vertical-align: -0.247em; border-left: 0px solid; width: 0px; height: 1.378em;\\\"></span></span></nobr><span role=\\\"presentation\\\"><math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo>∼</mo><mn>2</mn><msqrt><mn>2</mn></msqrt><mi>π</mi></math></span></span><script type=\\\"math/mml\\\"><math display=\\\"inline\\\"><mo>∼</mo><mn>2</mn><msqrt><mn>2</mn></msqrt><mi>π</mi></math></script> affirm the stabilizing influence of LC elasticity in such fingers, where λ and <i>R</i><sub>5CB</sub> are experimentally calculated droplet spacing and 5CB droplet radius. Control experiments elucidate the specific contributions of capillary, drag, solutal Marangoni, and osmotic forces to the 5CB droplet locomotion phenomena. The experimentally and analytically consistent demonstration also supports and predicts pressure drop-induced droplet velocities as <i>v</i> ∼ <i>t</i><sup>1.16</sup>.\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c04647\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c04647","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

宏观液晶(LC)液滴的自组织接触线不稳定性(CLI)是产生大量微型化LC液滴的巧妙途径。例如,当一个较大的挥发性溶剂(如己烷)滴被分配到一个较小的LC滴附近,该LC滴位于非溶剂(如水)柔软光滑的表面上,在液滴内观察到双涡形式的独特自组织运动。这种现象是由于己烷和LC在两个液滴之间快速反扩散,导致液滴内部形成一对涡流,然后在LC液滴的三相接触线(TPCL)处引发CLI。最初,由于净压力梯度PL,5CB >, LC液滴内部的拉普拉斯压力较高(PL,5CB);PL,海克斯,驱动LC走向己烷。然而,由于挥发性溶剂液滴由于快速蒸发而缩小,由于PL,5CB和lt;PL,十六进制。随后,己烷在LC液滴中的扩散及其蒸发在TPCL处表现为周期性振荡的CLI扩张和收缩,从而形成周期性的指状结构。在此之后,具有较高纵横比的手指分裂成一系列小型卫星LC液滴,经历瑞利-高原不稳定性(RPI)。观测到的归一化卫星液滴间距λ/R5CB ~ 3.152 -√πλ/R5CB ~ 3.152π与理论值~ 22 -√π ~ 22π ~ 22π相比的偏差证实了LC弹性在这种手指中的稳定作用,其中λ和R5CB是实验计算的液滴间距和5CB液滴半径。控制实验阐明了毛细管力、阻力、溶质马兰戈尼力和渗透力对5CB液滴运动现象的具体贡献。实验和分析一致的证明也支持和预测压力降引起的液滴速度为v ~ t1.16。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Recirculatory Solvotaxis of a Nematic Droplet on Water Surface Enabling Miniaturization

Recirculatory Solvotaxis of a Nematic Droplet on Water Surface Enabling Miniaturization
Self-organized contact line instabilities (CLI) of a macroscopic liquid crystal (LC) droplet can be an ingenious pathway to generate a large collection of miniaturized LC drops. For example, when a larger drop of volatile solvent (e.g., hexane) is dispensed near a smaller LC drop resting on a soft and slippery surface of a nonsolvent (e.g., water), unique self-organized locomotion in the form of a twin vortex has been observed within the droplets. This phenomenon is driven by the rapid counter diffusion of hexane and LC between the two droplets, resulting in the formation of a pair of vortices within the droplets before instigating a CLI at the three-phase contact line (TPCL) of the LC droplet. Initially, the higher Laplace pressure inside the LC droplet (PL,5CB) due to a net pressure gradient, PL,5CB > PL,Hex, drives the LC toward hexane. However, as the volatile solvent droplet shrinks due to rapid evaporation, a flow reversal happens owing to PL,5CB < PL,Hex. Subsequently, the diffusion of hexane into the LC droplet and its subsequent evaporation manifest a periodic oscillatory CLI expansion and retraction at the TPCL, which in turn form periodic finger-like structures. Following this, the fingers with a higher aspect ratio break into an array of miniaturized satellite LC droplets undergoing Rayleigh–Plateau instability (RPI). The observed deviation in the normalized satellite droplet spacingλ/R5CB3.152π compared to theoretical value 22π affirm the stabilizing influence of LC elasticity in such fingers, where λ and R5CB are experimentally calculated droplet spacing and 5CB droplet radius. Control experiments elucidate the specific contributions of capillary, drag, solutal Marangoni, and osmotic forces to the 5CB droplet locomotion phenomena. The experimentally and analytically consistent demonstration also supports and predicts pressure drop-induced droplet velocities as vt1.16.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信