{"title":"基于大分子动力学模拟的纳米级液滴正面碰撞的拓扑结构","authors":"Leonie Tugend, Simon Homes, Jadran Vrabec","doi":"10.1021/acs.langmuir.4c04588","DOIUrl":null,"url":null,"abstract":"The binary collision of nanoscale droplets is studied with molecular dynamics simulation for droplets consisting of up to 2 × 10<sup>7</sup> molecules interacting via a truncated and shifted form of the Lennard-Jones potential. Considering head-on collisions of droplets with a temperature near the triple point that occur in a saturated vapor of the same fluid, this work explores a range of collision topologies. Four droplet sizes, with a radius ranging from 30 to 120 molecule diameters, are simulated with a varying initial relative collision velocity, covering 36 cases in total. Due to the relatively large size of the droplets, this study aims to resolve the differences in the collision behavior between droplets on the micro- and on the macroscale. By analyzing various metrics of the impact, four distinct collision regimes are found: coalescence, stable collision, holes and shattering. Coalescence, observed at low Weber and Reynolds numbers, is the formation of a stable droplet without significant deformations of the merging objects. Stable collisions, characterized by the formation of one stable droplet with notable deformations during collision, occur within a Weber number range between 10 and 505. The holes regime is only observed for droplet radii greater than 30 molecule diameters and a Weber number between 505 to 750, while collision cases surpassing this Weber number fall into the shattering regime, resulting in the breakup into satellite structures.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"75 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topologies of Nanoscale Droplets upon Head-On Collision from Large Molecular Dynamics Simulations\",\"authors\":\"Leonie Tugend, Simon Homes, Jadran Vrabec\",\"doi\":\"10.1021/acs.langmuir.4c04588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The binary collision of nanoscale droplets is studied with molecular dynamics simulation for droplets consisting of up to 2 × 10<sup>7</sup> molecules interacting via a truncated and shifted form of the Lennard-Jones potential. Considering head-on collisions of droplets with a temperature near the triple point that occur in a saturated vapor of the same fluid, this work explores a range of collision topologies. Four droplet sizes, with a radius ranging from 30 to 120 molecule diameters, are simulated with a varying initial relative collision velocity, covering 36 cases in total. Due to the relatively large size of the droplets, this study aims to resolve the differences in the collision behavior between droplets on the micro- and on the macroscale. By analyzing various metrics of the impact, four distinct collision regimes are found: coalescence, stable collision, holes and shattering. Coalescence, observed at low Weber and Reynolds numbers, is the formation of a stable droplet without significant deformations of the merging objects. Stable collisions, characterized by the formation of one stable droplet with notable deformations during collision, occur within a Weber number range between 10 and 505. The holes regime is only observed for droplet radii greater than 30 molecule diameters and a Weber number between 505 to 750, while collision cases surpassing this Weber number fall into the shattering regime, resulting in the breakup into satellite structures.\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c04588\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c04588","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Topologies of Nanoscale Droplets upon Head-On Collision from Large Molecular Dynamics Simulations
The binary collision of nanoscale droplets is studied with molecular dynamics simulation for droplets consisting of up to 2 × 107 molecules interacting via a truncated and shifted form of the Lennard-Jones potential. Considering head-on collisions of droplets with a temperature near the triple point that occur in a saturated vapor of the same fluid, this work explores a range of collision topologies. Four droplet sizes, with a radius ranging from 30 to 120 molecule diameters, are simulated with a varying initial relative collision velocity, covering 36 cases in total. Due to the relatively large size of the droplets, this study aims to resolve the differences in the collision behavior between droplets on the micro- and on the macroscale. By analyzing various metrics of the impact, four distinct collision regimes are found: coalescence, stable collision, holes and shattering. Coalescence, observed at low Weber and Reynolds numbers, is the formation of a stable droplet without significant deformations of the merging objects. Stable collisions, characterized by the formation of one stable droplet with notable deformations during collision, occur within a Weber number range between 10 and 505. The holes regime is only observed for droplet radii greater than 30 molecule diameters and a Weber number between 505 to 750, while collision cases surpassing this Weber number fall into the shattering regime, resulting in the breakup into satellite structures.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).