Sylvain Lannebère, David E. Fernandes, Tiago A. Morgado, Mário G. Silveirinha
{"title":"Chiral-Gain光子学","authors":"Sylvain Lannebère, David E. Fernandes, Tiago A. Morgado, Mário G. Silveirinha","doi":"10.1002/lpor.202400881","DOIUrl":null,"url":null,"abstract":"<p>This work presents an exploratory study of the potential applications of electrically biased materials that possess a nonreciprocal and non-Hermitian electromagnetic response analogous to the electronic response of field-effect transistors. The most distinctive feature of such materials is their chiral-gain, meaning that their response can be active or dissipative depending on the handedness of the wave polarization. It is shown how the chiral-gain can be harnessed to develop novel electromagnetic devices with unique properties such as chiral lasers, polarization-dependent mirrors, and coherent-perfect-absorber lasers. Furthermore, it is demonstrated that materials with chiral-gain can bypass a reciprocity constraint that typically limits the external coupling strength, thus facilitating the excitation of cavities with extremely large quality factors.</p>","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"19 7","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chiral-Gain Photonics\",\"authors\":\"Sylvain Lannebère, David E. Fernandes, Tiago A. Morgado, Mário G. Silveirinha\",\"doi\":\"10.1002/lpor.202400881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work presents an exploratory study of the potential applications of electrically biased materials that possess a nonreciprocal and non-Hermitian electromagnetic response analogous to the electronic response of field-effect transistors. The most distinctive feature of such materials is their chiral-gain, meaning that their response can be active or dissipative depending on the handedness of the wave polarization. It is shown how the chiral-gain can be harnessed to develop novel electromagnetic devices with unique properties such as chiral lasers, polarization-dependent mirrors, and coherent-perfect-absorber lasers. Furthermore, it is demonstrated that materials with chiral-gain can bypass a reciprocity constraint that typically limits the external coupling strength, thus facilitating the excitation of cavities with extremely large quality factors.</p>\",\"PeriodicalId\":204,\"journal\":{\"name\":\"Laser & Photonics Reviews\",\"volume\":\"19 7\",\"pages\":\"\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser & Photonics Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/lpor.202400881\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lpor.202400881","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
This work presents an exploratory study of the potential applications of electrically biased materials that possess a nonreciprocal and non-Hermitian electromagnetic response analogous to the electronic response of field-effect transistors. The most distinctive feature of such materials is their chiral-gain, meaning that their response can be active or dissipative depending on the handedness of the wave polarization. It is shown how the chiral-gain can be harnessed to develop novel electromagnetic devices with unique properties such as chiral lasers, polarization-dependent mirrors, and coherent-perfect-absorber lasers. Furthermore, it is demonstrated that materials with chiral-gain can bypass a reciprocity constraint that typically limits the external coupling strength, thus facilitating the excitation of cavities with extremely large quality factors.
期刊介绍:
Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications.
As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics.
The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.