Chiral-Gain光子学

IF 10 1区 物理与天体物理 Q1 OPTICS
Sylvain Lannebère, David E. Fernandes, Tiago A. Morgado, Mário G. Silveirinha
{"title":"Chiral-Gain光子学","authors":"Sylvain Lannebère,&nbsp;David E. Fernandes,&nbsp;Tiago A. Morgado,&nbsp;Mário G. Silveirinha","doi":"10.1002/lpor.202400881","DOIUrl":null,"url":null,"abstract":"<p>This work presents an exploratory study of the potential applications of electrically biased materials that possess a nonreciprocal and non-Hermitian electromagnetic response analogous to the electronic response of field-effect transistors. The most distinctive feature of such materials is their chiral-gain, meaning that their response can be active or dissipative depending on the handedness of the wave polarization. It is shown how the chiral-gain can be harnessed to develop novel electromagnetic devices with unique properties such as chiral lasers, polarization-dependent mirrors, and coherent-perfect-absorber lasers. Furthermore, it is demonstrated that materials with chiral-gain can bypass a reciprocity constraint that typically limits the external coupling strength, thus facilitating the excitation of cavities with extremely large quality factors.</p>","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"19 7","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chiral-Gain Photonics\",\"authors\":\"Sylvain Lannebère,&nbsp;David E. Fernandes,&nbsp;Tiago A. Morgado,&nbsp;Mário G. Silveirinha\",\"doi\":\"10.1002/lpor.202400881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work presents an exploratory study of the potential applications of electrically biased materials that possess a nonreciprocal and non-Hermitian electromagnetic response analogous to the electronic response of field-effect transistors. The most distinctive feature of such materials is their chiral-gain, meaning that their response can be active or dissipative depending on the handedness of the wave polarization. It is shown how the chiral-gain can be harnessed to develop novel electromagnetic devices with unique properties such as chiral lasers, polarization-dependent mirrors, and coherent-perfect-absorber lasers. Furthermore, it is demonstrated that materials with chiral-gain can bypass a reciprocity constraint that typically limits the external coupling strength, thus facilitating the excitation of cavities with extremely large quality factors.</p>\",\"PeriodicalId\":204,\"journal\":{\"name\":\"Laser & Photonics Reviews\",\"volume\":\"19 7\",\"pages\":\"\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser & Photonics Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/lpor.202400881\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lpor.202400881","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

这项工作对电偏材料的潜在应用进行了探索性研究,这些材料具有类似于场效应晶体管的电子响应的非互易和非厄米电磁响应。这种材料最显著的特征是它们的手性增益,这意味着它们的响应可以是有源的,也可以是耗散的,这取决于波偏振的手性。它展示了如何利用手性增益来开发具有独特性能的新型电磁器件,如手性激光器、偏振依赖镜和相干完美吸收激光器。此外,研究表明,具有手性增益的材料可以绕过通常限制外部耦合强度的互易约束,从而促进具有极大质量因子的空腔的激发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Chiral-Gain Photonics

Chiral-Gain Photonics

Chiral-Gain Photonics

This work presents an exploratory study of the potential applications of electrically biased materials that possess a nonreciprocal and non-Hermitian electromagnetic response analogous to the electronic response of field-effect transistors. The most distinctive feature of such materials is their chiral-gain, meaning that their response can be active or dissipative depending on the handedness of the wave polarization. It is shown how the chiral-gain can be harnessed to develop novel electromagnetic devices with unique properties such as chiral lasers, polarization-dependent mirrors, and coherent-perfect-absorber lasers. Furthermore, it is demonstrated that materials with chiral-gain can bypass a reciprocity constraint that typically limits the external coupling strength, thus facilitating the excitation of cavities with extremely large quality factors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信