热、冷岩浆系统的不同火山变形模式

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Gregor Weber, Juliet Biggs, Catherine Annen
{"title":"热、冷岩浆系统的不同火山变形模式","authors":"Gregor Weber, Juliet Biggs, Catherine Annen","doi":"10.1038/s41467-024-55443-z","DOIUrl":null,"url":null,"abstract":"<p>Volcano deformation can be detected over timescales from seconds to decades, offering valuable insights for magma dynamics. However, these signals are shaped by the long-term evolution of magmatic systems, a coupling that remains poorly understood. Here we integrate thermal models of crustal-scale magmatism with thermo-mechanical simulations of ground deformation. This allows us to determine the influence of magmatic flux over 10<sup>5</sup>–10<sup>6</sup> years on viscoelastic deformation spanning a 10-year observation period. Our results reveal a coupling between surface deformation and the thermal evolution of magma systems, modulated by magma flux and system lifespan. Relatively cold magma systems exhibit cycles of uplift and subsidence, while comparatively hot plumbing systems experience solely uplift. These findings align with geophysical observations from caldera systems, emphasizing the potential of surface deformation measurements as tool for deciphering the state and architecture of magmatic systems. Considering long-term magmatic system evolution is imperative for accurate interpretation of volcanic unrest.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"2 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distinct patterns of volcano deformation for hot and cold magmatic systems\",\"authors\":\"Gregor Weber, Juliet Biggs, Catherine Annen\",\"doi\":\"10.1038/s41467-024-55443-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Volcano deformation can be detected over timescales from seconds to decades, offering valuable insights for magma dynamics. However, these signals are shaped by the long-term evolution of magmatic systems, a coupling that remains poorly understood. Here we integrate thermal models of crustal-scale magmatism with thermo-mechanical simulations of ground deformation. This allows us to determine the influence of magmatic flux over 10<sup>5</sup>–10<sup>6</sup> years on viscoelastic deformation spanning a 10-year observation period. Our results reveal a coupling between surface deformation and the thermal evolution of magma systems, modulated by magma flux and system lifespan. Relatively cold magma systems exhibit cycles of uplift and subsidence, while comparatively hot plumbing systems experience solely uplift. These findings align with geophysical observations from caldera systems, emphasizing the potential of surface deformation measurements as tool for deciphering the state and architecture of magmatic systems. Considering long-term magmatic system evolution is imperative for accurate interpretation of volcanic unrest.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-55443-z\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55443-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

火山变形可以在几秒到几十年的时间尺度上被检测到,为岩浆动力学提供了有价值的见解。然而,这些信号是由岩浆系统的长期演化形成的,人们对这种耦合仍然知之甚少。这里我们将地壳尺度岩浆活动的热模型与地面变形的热力学模拟相结合。这使我们能够确定105-106年的岩浆通量对跨越10年观察期的粘弹性变形的影响。我们的研究结果揭示了地表变形与岩浆系统热演化之间的耦合,并受岩浆通量和系统寿命的调节。相对较冷的岩浆系统表现出隆起和下沉的循环,而相对较热的管道系统只经历隆起。这些发现与火山口系统的地球物理观测结果一致,强调了地表变形测量作为破译岩浆系统状态和结构的工具的潜力。考虑长期的岩浆系统演化是准确解释火山不稳定的必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Distinct patterns of volcano deformation for hot and cold magmatic systems

Distinct patterns of volcano deformation for hot and cold magmatic systems

Volcano deformation can be detected over timescales from seconds to decades, offering valuable insights for magma dynamics. However, these signals are shaped by the long-term evolution of magmatic systems, a coupling that remains poorly understood. Here we integrate thermal models of crustal-scale magmatism with thermo-mechanical simulations of ground deformation. This allows us to determine the influence of magmatic flux over 105–106 years on viscoelastic deformation spanning a 10-year observation period. Our results reveal a coupling between surface deformation and the thermal evolution of magma systems, modulated by magma flux and system lifespan. Relatively cold magma systems exhibit cycles of uplift and subsidence, while comparatively hot plumbing systems experience solely uplift. These findings align with geophysical observations from caldera systems, emphasizing the potential of surface deformation measurements as tool for deciphering the state and architecture of magmatic systems. Considering long-term magmatic system evolution is imperative for accurate interpretation of volcanic unrest.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信