Mei Dang, Longjiang Wu, Huaqing Bai, Chenxuan Yang, Qinqin Deng, Gelin Jin, Xiaoying Zhang
{"title":"纳米塑料诱导的抗体液-液相分离:对潜在免疫毒性影响的见解","authors":"Mei Dang, Longjiang Wu, Huaqing Bai, Chenxuan Yang, Qinqin Deng, Gelin Jin, Xiaoying Zhang","doi":"10.1016/j.jhazmat.2025.137170","DOIUrl":null,"url":null,"abstract":"The increasing environmental prevalence of micro/nano plastics (MNPs) has raised significant concerns regarding their potential impact on human health, particularly in terms of immunotoxicity. However, the direct effects of MNPs on immune molecules, especially how they may influence protein liquid-liquid phase separation (LLPS)—a critical process implicated in various aspects of immune function—remain largely unexplored. This study addresses this gap by investigating the effects of polystyrene nanoparticles (PS NPs) with different surface modifications and sizes on LLPS in immunoglobulin Y (IgY) antibodies, critical components of the avian immune system. Our findings reveal that PS-COOH NPs uniquely induce LLPS in IgY in a size-dependent manner, while PS-NH<sub>2</sub> and unmodified PS NPs do not. Furthermore, NP-induced LLPS disrupts IgY’s antigen-binding capability, potentially impairing immune responses. Notably, the IgY-Fc fragment shows a greater tendency for LLPS than the full-length antibody, suggesting broader implications for immune receptor interactions. These findings underscore the significant roles of nanoparticle surface chemistry, size, and antigen interactions in modulating LLPS. This study pioneers the exploration of MNPs-induced LLPS as a potential mechanism of immunotoxicity, providing crucial insights into the health risks posed by environmental MNPs and informing strategies for mitigation.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"38 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoplastic-Induced Antibody Liquid-liquid Phase Separation: Insights into Potential Immunotoxic Implications\",\"authors\":\"Mei Dang, Longjiang Wu, Huaqing Bai, Chenxuan Yang, Qinqin Deng, Gelin Jin, Xiaoying Zhang\",\"doi\":\"10.1016/j.jhazmat.2025.137170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing environmental prevalence of micro/nano plastics (MNPs) has raised significant concerns regarding their potential impact on human health, particularly in terms of immunotoxicity. However, the direct effects of MNPs on immune molecules, especially how they may influence protein liquid-liquid phase separation (LLPS)—a critical process implicated in various aspects of immune function—remain largely unexplored. This study addresses this gap by investigating the effects of polystyrene nanoparticles (PS NPs) with different surface modifications and sizes on LLPS in immunoglobulin Y (IgY) antibodies, critical components of the avian immune system. Our findings reveal that PS-COOH NPs uniquely induce LLPS in IgY in a size-dependent manner, while PS-NH<sub>2</sub> and unmodified PS NPs do not. Furthermore, NP-induced LLPS disrupts IgY’s antigen-binding capability, potentially impairing immune responses. Notably, the IgY-Fc fragment shows a greater tendency for LLPS than the full-length antibody, suggesting broader implications for immune receptor interactions. These findings underscore the significant roles of nanoparticle surface chemistry, size, and antigen interactions in modulating LLPS. This study pioneers the exploration of MNPs-induced LLPS as a potential mechanism of immunotoxicity, providing crucial insights into the health risks posed by environmental MNPs and informing strategies for mitigation.\",\"PeriodicalId\":361,\"journal\":{\"name\":\"Journal of Hazardous Materials\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hazardous Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhazmat.2025.137170\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137170","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Nanoplastic-Induced Antibody Liquid-liquid Phase Separation: Insights into Potential Immunotoxic Implications
The increasing environmental prevalence of micro/nano plastics (MNPs) has raised significant concerns regarding their potential impact on human health, particularly in terms of immunotoxicity. However, the direct effects of MNPs on immune molecules, especially how they may influence protein liquid-liquid phase separation (LLPS)—a critical process implicated in various aspects of immune function—remain largely unexplored. This study addresses this gap by investigating the effects of polystyrene nanoparticles (PS NPs) with different surface modifications and sizes on LLPS in immunoglobulin Y (IgY) antibodies, critical components of the avian immune system. Our findings reveal that PS-COOH NPs uniquely induce LLPS in IgY in a size-dependent manner, while PS-NH2 and unmodified PS NPs do not. Furthermore, NP-induced LLPS disrupts IgY’s antigen-binding capability, potentially impairing immune responses. Notably, the IgY-Fc fragment shows a greater tendency for LLPS than the full-length antibody, suggesting broader implications for immune receptor interactions. These findings underscore the significant roles of nanoparticle surface chemistry, size, and antigen interactions in modulating LLPS. This study pioneers the exploration of MNPs-induced LLPS as a potential mechanism of immunotoxicity, providing crucial insights into the health risks posed by environmental MNPs and informing strategies for mitigation.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.