Yuxuan Sun, Chuanbing Li, Dan Liu, Fei Zhang, Jie Xue, Qingbin Zheng
{"title":"多功能纳米碳材料的表面与界面工程","authors":"Yuxuan Sun, Chuanbing Li, Dan Liu, Fei Zhang, Jie Xue, Qingbin Zheng","doi":"10.1021/acsnano.4c14128","DOIUrl":null,"url":null,"abstract":"Multifunctional materials are accelerating the development of soft electronics with integrated capabilities including wearable physical sensing, efficient thermal management, and high-performance electromagnetic interference shielding. With outstanding mechanical, thermal, and electrical properties, nanocarbon materials offer ample opportunities for designing multifunctional devices with broad applications. Surface and interfacial engineering have emerged as an effective approach to modulate interconnected structures, which may have tunable and synergistic effects for the precise control over mechanical, transport, and electromagnetic properties. This review presents a comprehensive summary of recent advances empowering the development of multifunctional nanocarbon materials via surface and interfacial engineering in the context of surface and interfacial engineering techniques, structural evolution, multifunctional properties, and their wide applications. Special emphasis is placed on identifying the critical correlations between interfacial structures across nanoscales, microscales, and macroscales and multifunctional properties. The challenges currently faced by the multifunctional nanocarbon materials are examined, and potential opportunities for applications are also revealed. We anticipate that this comprehensive review will promote the further development of soft electronics and trigger ideas for the interfacial design of nanocarbon materials in multidisciplinary applications.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"35 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface and Interfacial Engineering for Multifunctional Nanocarbon Materials\",\"authors\":\"Yuxuan Sun, Chuanbing Li, Dan Liu, Fei Zhang, Jie Xue, Qingbin Zheng\",\"doi\":\"10.1021/acsnano.4c14128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multifunctional materials are accelerating the development of soft electronics with integrated capabilities including wearable physical sensing, efficient thermal management, and high-performance electromagnetic interference shielding. With outstanding mechanical, thermal, and electrical properties, nanocarbon materials offer ample opportunities for designing multifunctional devices with broad applications. Surface and interfacial engineering have emerged as an effective approach to modulate interconnected structures, which may have tunable and synergistic effects for the precise control over mechanical, transport, and electromagnetic properties. This review presents a comprehensive summary of recent advances empowering the development of multifunctional nanocarbon materials via surface and interfacial engineering in the context of surface and interfacial engineering techniques, structural evolution, multifunctional properties, and their wide applications. Special emphasis is placed on identifying the critical correlations between interfacial structures across nanoscales, microscales, and macroscales and multifunctional properties. The challenges currently faced by the multifunctional nanocarbon materials are examined, and potential opportunities for applications are also revealed. We anticipate that this comprehensive review will promote the further development of soft electronics and trigger ideas for the interfacial design of nanocarbon materials in multidisciplinary applications.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c14128\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c14128","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Surface and Interfacial Engineering for Multifunctional Nanocarbon Materials
Multifunctional materials are accelerating the development of soft electronics with integrated capabilities including wearable physical sensing, efficient thermal management, and high-performance electromagnetic interference shielding. With outstanding mechanical, thermal, and electrical properties, nanocarbon materials offer ample opportunities for designing multifunctional devices with broad applications. Surface and interfacial engineering have emerged as an effective approach to modulate interconnected structures, which may have tunable and synergistic effects for the precise control over mechanical, transport, and electromagnetic properties. This review presents a comprehensive summary of recent advances empowering the development of multifunctional nanocarbon materials via surface and interfacial engineering in the context of surface and interfacial engineering techniques, structural evolution, multifunctional properties, and their wide applications. Special emphasis is placed on identifying the critical correlations between interfacial structures across nanoscales, microscales, and macroscales and multifunctional properties. The challenges currently faced by the multifunctional nanocarbon materials are examined, and potential opportunities for applications are also revealed. We anticipate that this comprehensive review will promote the further development of soft electronics and trigger ideas for the interfacial design of nanocarbon materials in multidisciplinary applications.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.