增强富镍LiNixCoyMn1-x-yO2阴极结构稳定性的形成周期控制

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-01-09 DOI:10.1021/acsnano.4c10476
Sungmin Na, Rena Oh, Jungyeon Song, Myoung-Jae Lee, Kwangjin Park, Gyeong-Su Park
{"title":"增强富镍LiNixCoyMn1-x-yO2阴极结构稳定性的形成周期控制","authors":"Sungmin Na, Rena Oh, Jungyeon Song, Myoung-Jae Lee, Kwangjin Park, Gyeong-Su Park","doi":"10.1021/acsnano.4c10476","DOIUrl":null,"url":null,"abstract":"Nickel-rich NCM cathode materials promise lithium-ion batteries with a high energy density. However, an increased Ni fraction in the cathode leads to complex phase transformations with electrode–electrolyte side reactions, which cause rapid capacity fading. Here, we show that an initial formation cycle at 0.1 C with a higher cutoff voltage (≥4.35 V) increases the stability of Ni-rich NCM (LiNi<sub>0.88</sub>Co<sub>0.08</sub>Mn<sub>0.04</sub>O<sub>2</sub>) particles during cycling at 1 C. We unveil that the formation of intragranular nanovoids is directly associated with the initial formation cycle at a lower charging cutoff voltage when oxygen vacancies are introduced at the Ni-rich NCM particle surface, due to irreversible electrolyte decomposition at the cathode–electrolyte interface. Nanovoid evolution of the Ni-rich NCM particles after 50 cycles increases the NiO-like rock salt phase; it results in intragranular cracks, which cause structural instability via heterogeneous phase distribution. This work demonstrates the importance of controlling Ni-rich NCM surface chemistry from the initial formation cycle to achieve better cycling stability.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"79 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formation Cycle Control for Enhanced Structural Stability of Ni-Rich LiNixCoyMn1-x-yO2 Cathodes\",\"authors\":\"Sungmin Na, Rena Oh, Jungyeon Song, Myoung-Jae Lee, Kwangjin Park, Gyeong-Su Park\",\"doi\":\"10.1021/acsnano.4c10476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nickel-rich NCM cathode materials promise lithium-ion batteries with a high energy density. However, an increased Ni fraction in the cathode leads to complex phase transformations with electrode–electrolyte side reactions, which cause rapid capacity fading. Here, we show that an initial formation cycle at 0.1 C with a higher cutoff voltage (≥4.35 V) increases the stability of Ni-rich NCM (LiNi<sub>0.88</sub>Co<sub>0.08</sub>Mn<sub>0.04</sub>O<sub>2</sub>) particles during cycling at 1 C. We unveil that the formation of intragranular nanovoids is directly associated with the initial formation cycle at a lower charging cutoff voltage when oxygen vacancies are introduced at the Ni-rich NCM particle surface, due to irreversible electrolyte decomposition at the cathode–electrolyte interface. Nanovoid evolution of the Ni-rich NCM particles after 50 cycles increases the NiO-like rock salt phase; it results in intragranular cracks, which cause structural instability via heterogeneous phase distribution. This work demonstrates the importance of controlling Ni-rich NCM surface chemistry from the initial formation cycle to achieve better cycling stability.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c10476\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c10476","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

富含镍的NCM正极材料有望成为具有高能量密度的锂离子电池。然而,阴极中Ni分数的增加会导致复杂的相变和电极-电解质副反应,从而导致容量快速衰减。在此,我们发现在0.1 C和较高的截止电压(≥4.35 V)下初始形成周期增加了富ni NCM (lini0.88 co0.08 mn0.040 o2)颗粒在1 C循环时的稳定性。我们揭示了在较低的充电截止电压下,当富ni NCM颗粒表面引入氧空位时,由于阴极-电解质界面不可逆的电解质分解,颗粒内纳米空隙的形成与初始形成周期直接相关。经过50次循环后,富镍NCM颗粒的纳米孔隙演化增加了类镍岩盐相;晶内裂纹通过非均相分布导致结构失稳。这项工作证明了从初始地层循环开始控制富镍NCM表面化学的重要性,以获得更好的循环稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Formation Cycle Control for Enhanced Structural Stability of Ni-Rich LiNixCoyMn1-x-yO2 Cathodes

Formation Cycle Control for Enhanced Structural Stability of Ni-Rich LiNixCoyMn1-x-yO2 Cathodes
Nickel-rich NCM cathode materials promise lithium-ion batteries with a high energy density. However, an increased Ni fraction in the cathode leads to complex phase transformations with electrode–electrolyte side reactions, which cause rapid capacity fading. Here, we show that an initial formation cycle at 0.1 C with a higher cutoff voltage (≥4.35 V) increases the stability of Ni-rich NCM (LiNi0.88Co0.08Mn0.04O2) particles during cycling at 1 C. We unveil that the formation of intragranular nanovoids is directly associated with the initial formation cycle at a lower charging cutoff voltage when oxygen vacancies are introduced at the Ni-rich NCM particle surface, due to irreversible electrolyte decomposition at the cathode–electrolyte interface. Nanovoid evolution of the Ni-rich NCM particles after 50 cycles increases the NiO-like rock salt phase; it results in intragranular cracks, which cause structural instability via heterogeneous phase distribution. This work demonstrates the importance of controlling Ni-rich NCM surface chemistry from the initial formation cycle to achieve better cycling stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信