Peijian Shi, Yi Li, Zhi Li, Xin Jiang, Jie Yan, Rui Zhou, Yi Qin, Yifan Lin, Jingran Huang, Bodong Tan, Yinan Wang, Tongqi Wen, Beilin Ye, Chunyan Ling, Junhua Luan, Zhe Shen, Biao Ding, Qiang Li, Tianxiang Zheng, Weili Ren, Tianlong Zhang, Yang Ren, Yunbo Zhong, C. T. Liu, Huajian Gao, Yuntian Zhu
{"title":"通过微观组织的继承和细化,制备出强度高、延展性好、层次分明的异质层状组织合金","authors":"Peijian Shi, Yi Li, Zhi Li, Xin Jiang, Jie Yan, Rui Zhou, Yi Qin, Yifan Lin, Jingran Huang, Bodong Tan, Yinan Wang, Tongqi Wen, Beilin Ye, Chunyan Ling, Junhua Luan, Zhe Shen, Biao Ding, Qiang Li, Tianxiang Zheng, Weili Ren, Tianlong Zhang, Yang Ren, Yunbo Zhong, C. T. Liu, Huajian Gao, Yuntian Zhu","doi":"10.1073/pnas.2409317121","DOIUrl":null,"url":null,"abstract":"The strength−ductility trade-off exists ubiquitously, especially in brittle intermetallic-containing multiple principal element alloys (MPEAs), where the intermetallic phases often induce premature failure leading to severe ductility reduction. Hierarchical heterogeneities represent a promising microstructural solution to achieve simultaneous strength−ductility enhancement. However, it remains fundamentally challenging to tailor hierarchical heterostructures using conventional methods, which often rely on costly and time-consuming processing. Here, we report a multiscale microstructural inheritance and refinement strategy to process “structural hierarchy precursors” in as-cast heterogeneous Al <jats:sub>0.7</jats:sub> CoCrFeNi MPEAs, which lead directly to a hierarchical hetero-lamellar structure (HLS) after simple rolling and annealing. Interestingly, it takes only 10 min of annealing time, two orders of magnitude less than that required to render the state-of-the-art properties during conventional processing of Al <jats:sub>0.7</jats:sub> CoCrFeNi, for us to achieve record-high strength−ductility combinations via the hierarchical HLS design that sequentially stimulates multiple unusual deformation and reinforcement mechanisms. In particular, the HLS-enabled high hetero-deformation-induced (HDI) internal stress triggers profuse <111>-type dislocations on over five independent slip systems in the supposedly brittle intermetallic phase and activates extensive stacking faults (SFs) and nanotwinning in the adjoining soft phase with a rather high SF energy. These unexpected, dynamically reinforcing hetero-deformation mechanisms across multiple length scales facilitate high sustained HDI strain hardening, along with a salient microcrack-mediated extrinsic ductilization effect, suggesting that the proposed microstructural inheritance and refinement strategy provides an efficient, fast, and low-cost approach to overcome the strength−ductility trade-off in a broad range of structural materials.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"15 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong, ductile, and hierarchical hetero-lamellar-structured alloys through microstructural inheritance and refinement\",\"authors\":\"Peijian Shi, Yi Li, Zhi Li, Xin Jiang, Jie Yan, Rui Zhou, Yi Qin, Yifan Lin, Jingran Huang, Bodong Tan, Yinan Wang, Tongqi Wen, Beilin Ye, Chunyan Ling, Junhua Luan, Zhe Shen, Biao Ding, Qiang Li, Tianxiang Zheng, Weili Ren, Tianlong Zhang, Yang Ren, Yunbo Zhong, C. T. Liu, Huajian Gao, Yuntian Zhu\",\"doi\":\"10.1073/pnas.2409317121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The strength−ductility trade-off exists ubiquitously, especially in brittle intermetallic-containing multiple principal element alloys (MPEAs), where the intermetallic phases often induce premature failure leading to severe ductility reduction. Hierarchical heterogeneities represent a promising microstructural solution to achieve simultaneous strength−ductility enhancement. However, it remains fundamentally challenging to tailor hierarchical heterostructures using conventional methods, which often rely on costly and time-consuming processing. Here, we report a multiscale microstructural inheritance and refinement strategy to process “structural hierarchy precursors” in as-cast heterogeneous Al <jats:sub>0.7</jats:sub> CoCrFeNi MPEAs, which lead directly to a hierarchical hetero-lamellar structure (HLS) after simple rolling and annealing. Interestingly, it takes only 10 min of annealing time, two orders of magnitude less than that required to render the state-of-the-art properties during conventional processing of Al <jats:sub>0.7</jats:sub> CoCrFeNi, for us to achieve record-high strength−ductility combinations via the hierarchical HLS design that sequentially stimulates multiple unusual deformation and reinforcement mechanisms. In particular, the HLS-enabled high hetero-deformation-induced (HDI) internal stress triggers profuse <111>-type dislocations on over five independent slip systems in the supposedly brittle intermetallic phase and activates extensive stacking faults (SFs) and nanotwinning in the adjoining soft phase with a rather high SF energy. These unexpected, dynamically reinforcing hetero-deformation mechanisms across multiple length scales facilitate high sustained HDI strain hardening, along with a salient microcrack-mediated extrinsic ductilization effect, suggesting that the proposed microstructural inheritance and refinement strategy provides an efficient, fast, and low-cost approach to overcome the strength−ductility trade-off in a broad range of structural materials.\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2409317121\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2409317121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Strong, ductile, and hierarchical hetero-lamellar-structured alloys through microstructural inheritance and refinement
The strength−ductility trade-off exists ubiquitously, especially in brittle intermetallic-containing multiple principal element alloys (MPEAs), where the intermetallic phases often induce premature failure leading to severe ductility reduction. Hierarchical heterogeneities represent a promising microstructural solution to achieve simultaneous strength−ductility enhancement. However, it remains fundamentally challenging to tailor hierarchical heterostructures using conventional methods, which often rely on costly and time-consuming processing. Here, we report a multiscale microstructural inheritance and refinement strategy to process “structural hierarchy precursors” in as-cast heterogeneous Al 0.7 CoCrFeNi MPEAs, which lead directly to a hierarchical hetero-lamellar structure (HLS) after simple rolling and annealing. Interestingly, it takes only 10 min of annealing time, two orders of magnitude less than that required to render the state-of-the-art properties during conventional processing of Al 0.7 CoCrFeNi, for us to achieve record-high strength−ductility combinations via the hierarchical HLS design that sequentially stimulates multiple unusual deformation and reinforcement mechanisms. In particular, the HLS-enabled high hetero-deformation-induced (HDI) internal stress triggers profuse <111>-type dislocations on over five independent slip systems in the supposedly brittle intermetallic phase and activates extensive stacking faults (SFs) and nanotwinning in the adjoining soft phase with a rather high SF energy. These unexpected, dynamically reinforcing hetero-deformation mechanisms across multiple length scales facilitate high sustained HDI strain hardening, along with a salient microcrack-mediated extrinsic ductilization effect, suggesting that the proposed microstructural inheritance and refinement strategy provides an efficient, fast, and low-cost approach to overcome the strength−ductility trade-off in a broad range of structural materials.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.