Allan Mancoo, Mariana Silva, Claudia Lopes, Maria Loureiro, Vanessa Pinto, João F. C. B. Ramalho, Patricia Carvalho, Carlos A. J. Gouveia, Sara Rocha, Sandro M. P. Bordeira, Paula M. Sampaio, Alex Turpin, Henkjan Gersen, Mehak Mumtaz
{"title":"通过光散射和机器学习解决药物输送系统中纳米载体的非均匀混合物","authors":"Allan Mancoo, Mariana Silva, Claudia Lopes, Maria Loureiro, Vanessa Pinto, João F. C. B. Ramalho, Patricia Carvalho, Carlos A. J. Gouveia, Sara Rocha, Sandro M. P. Bordeira, Paula M. Sampaio, Alex Turpin, Henkjan Gersen, Mehak Mumtaz","doi":"10.1021/acsnano.4c12963","DOIUrl":null,"url":null,"abstract":"Nanocarriers (NCs) have emerged as a revolutionary approach in targeted drug delivery, promising to enhance drug efficacy and reduce toxicity through precise targeting and controlled release mechanisms. Despite their potential, the clinical adoption of NCs is hindered by challenges in their physicochemical characterization, essential for ensuring drug safety, efficacy, and quality control. Traditional characterization methods, such as dynamic light scattering and nanoparticle tracking analysis, offer limited insights, primarily focusing on particle size and concentration, while techniques like high-performance liquid chromatography and mass spectrometry are hampered by extensive sample preparation, high costs, and potential sample degradation. Addressing these limitations, this work presents a cost-effective methodology leveraging light scattering and optical forces, combined with machine learning algorithms, to characterize polydisperse nanoparticle mixtures, including lipid-based NCs. We prove that our approach provides quantification of the relative concentration of complex nanoparticle suspensions by detecting changes in refractive index and polydispersity without extensive sample preparation or destruction, offering a high-throughput solution for NC characterization in drug delivery systems. Experimental validation demonstrates the method’s efficacy in characterizing commercially available synthetic nanoparticles and Doxoves, a liposomal formulation of Doxorubicin used in cancer treatment, marking a significant advancement toward reliable, noninvasive characterization techniques that can accelerate the clinical translation of nanocarrier-based therapeutics.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"37 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward Resolving Heterogeneous Mixtures of Nanocarriers in Drug Delivery Systems through Light Scattering and Machine Learning\",\"authors\":\"Allan Mancoo, Mariana Silva, Claudia Lopes, Maria Loureiro, Vanessa Pinto, João F. C. B. Ramalho, Patricia Carvalho, Carlos A. J. Gouveia, Sara Rocha, Sandro M. P. Bordeira, Paula M. Sampaio, Alex Turpin, Henkjan Gersen, Mehak Mumtaz\",\"doi\":\"10.1021/acsnano.4c12963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanocarriers (NCs) have emerged as a revolutionary approach in targeted drug delivery, promising to enhance drug efficacy and reduce toxicity through precise targeting and controlled release mechanisms. Despite their potential, the clinical adoption of NCs is hindered by challenges in their physicochemical characterization, essential for ensuring drug safety, efficacy, and quality control. Traditional characterization methods, such as dynamic light scattering and nanoparticle tracking analysis, offer limited insights, primarily focusing on particle size and concentration, while techniques like high-performance liquid chromatography and mass spectrometry are hampered by extensive sample preparation, high costs, and potential sample degradation. Addressing these limitations, this work presents a cost-effective methodology leveraging light scattering and optical forces, combined with machine learning algorithms, to characterize polydisperse nanoparticle mixtures, including lipid-based NCs. We prove that our approach provides quantification of the relative concentration of complex nanoparticle suspensions by detecting changes in refractive index and polydispersity without extensive sample preparation or destruction, offering a high-throughput solution for NC characterization in drug delivery systems. Experimental validation demonstrates the method’s efficacy in characterizing commercially available synthetic nanoparticles and Doxoves, a liposomal formulation of Doxorubicin used in cancer treatment, marking a significant advancement toward reliable, noninvasive characterization techniques that can accelerate the clinical translation of nanocarrier-based therapeutics.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c12963\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c12963","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Toward Resolving Heterogeneous Mixtures of Nanocarriers in Drug Delivery Systems through Light Scattering and Machine Learning
Nanocarriers (NCs) have emerged as a revolutionary approach in targeted drug delivery, promising to enhance drug efficacy and reduce toxicity through precise targeting and controlled release mechanisms. Despite their potential, the clinical adoption of NCs is hindered by challenges in their physicochemical characterization, essential for ensuring drug safety, efficacy, and quality control. Traditional characterization methods, such as dynamic light scattering and nanoparticle tracking analysis, offer limited insights, primarily focusing on particle size and concentration, while techniques like high-performance liquid chromatography and mass spectrometry are hampered by extensive sample preparation, high costs, and potential sample degradation. Addressing these limitations, this work presents a cost-effective methodology leveraging light scattering and optical forces, combined with machine learning algorithms, to characterize polydisperse nanoparticle mixtures, including lipid-based NCs. We prove that our approach provides quantification of the relative concentration of complex nanoparticle suspensions by detecting changes in refractive index and polydispersity without extensive sample preparation or destruction, offering a high-throughput solution for NC characterization in drug delivery systems. Experimental validation demonstrates the method’s efficacy in characterizing commercially available synthetic nanoparticles and Doxoves, a liposomal formulation of Doxorubicin used in cancer treatment, marking a significant advancement toward reliable, noninvasive characterization techniques that can accelerate the clinical translation of nanocarrier-based therapeutics.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.