{"title":"黑洞环面系统的长期蒙特卡罗中微子辐射流体动力学模拟","authors":"Kyohei Kawaguchi, Sho Fujibayashi, Masaru Shibata","doi":"10.1103/physrevd.111.023015","DOIUrl":null,"url":null,"abstract":"We present our new general relativistic Monte Carlo (MC)-based neutrino radiation hydrodynamics code designed to solve axisymmetric systems with several improvements. The main improvements are as follows: (i) the development of an extended version of the implicit MC method for multispecies radiation fields; (ii) modeling of neutrino pair process rates based on a new numerically efficient and asymptotically correct fitting function for the kernel function; (iii) the implementation of new numerical limiters on the radiation-matter interaction to ensure a stable and physically correct evolution of the system. We apply our code to a black hole (BH)-torus system with a BH mass of 3</a:mn>M</a:mi></a:mrow>⊙</a:mo></a:mrow></a:msub></a:mrow></a:math>, BH dimensionless spin of 0.8, and a torus mass of <d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><d:mn>0.1</d:mn><d:msub><d:mi>M</d:mi><d:mo stretchy=\"false\">⊙</d:mo></d:msub></d:math>, which mimics a postmerger remnant of a binary neutron star merger in the case that the massive neutron star collapses to a BH within a short timescale (<g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mo>∼</g:mo><g:mn>10</g:mn><g:mtext> </g:mtext><g:mtext> </g:mtext><g:mi>ms</g:mi></g:math>). We follow the evolution of the BH-torus system up to more than 1 s with our MC-based radiation viscous-hydrodynamics code that dynamically takes into account nonthermal pair annihilation. We find that the system evolution and the various key quantities, such as neutrino luminosity, ejecta mass, torus <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:msub><i:mi>Y</i:mi><i:mi>e</i:mi></i:msub></i:math>, and pair annihilation luminosity, are broadly in agreement with the results of the previous studies. We also find that the <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:msub><k:mi>ν</k:mi><k:mi>e</k:mi></k:msub><k:msub><k:mover accent=\"true\"><k:mi>ν</k:mi><k:mo stretchy=\"false\">¯</k:mo></k:mover><k:mi>e</k:mi></k:msub></k:math> pair annihilation can launch a relativistic outflow for a timescale of <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><o:mo>∼</o:mo><o:mn>0.1</o:mn><o:mtext> </o:mtext><o:mtext> </o:mtext><o:mi mathvariant=\"normal\">s</o:mi></o:math>, and it can be energetic enough to explain some of short-hard gamma-ray bursts and the precursors. Finally, we calculate the indicators of the fast flavor instability directly from the obtained neutrino distribution functions, which indicate that the instability can occur particularly near the equatorial region of the torus. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"46 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-term Monte Carlo-based neutrino-radiation hydrodynamics simulations for a black hole-torus system\",\"authors\":\"Kyohei Kawaguchi, Sho Fujibayashi, Masaru Shibata\",\"doi\":\"10.1103/physrevd.111.023015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present our new general relativistic Monte Carlo (MC)-based neutrino radiation hydrodynamics code designed to solve axisymmetric systems with several improvements. The main improvements are as follows: (i) the development of an extended version of the implicit MC method for multispecies radiation fields; (ii) modeling of neutrino pair process rates based on a new numerically efficient and asymptotically correct fitting function for the kernel function; (iii) the implementation of new numerical limiters on the radiation-matter interaction to ensure a stable and physically correct evolution of the system. We apply our code to a black hole (BH)-torus system with a BH mass of 3</a:mn>M</a:mi></a:mrow>⊙</a:mo></a:mrow></a:msub></a:mrow></a:math>, BH dimensionless spin of 0.8, and a torus mass of <d:math xmlns:d=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><d:mn>0.1</d:mn><d:msub><d:mi>M</d:mi><d:mo stretchy=\\\"false\\\">⊙</d:mo></d:msub></d:math>, which mimics a postmerger remnant of a binary neutron star merger in the case that the massive neutron star collapses to a BH within a short timescale (<g:math xmlns:g=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><g:mo>∼</g:mo><g:mn>10</g:mn><g:mtext> </g:mtext><g:mtext> </g:mtext><g:mi>ms</g:mi></g:math>). We follow the evolution of the BH-torus system up to more than 1 s with our MC-based radiation viscous-hydrodynamics code that dynamically takes into account nonthermal pair annihilation. We find that the system evolution and the various key quantities, such as neutrino luminosity, ejecta mass, torus <i:math xmlns:i=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><i:msub><i:mi>Y</i:mi><i:mi>e</i:mi></i:msub></i:math>, and pair annihilation luminosity, are broadly in agreement with the results of the previous studies. We also find that the <k:math xmlns:k=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><k:msub><k:mi>ν</k:mi><k:mi>e</k:mi></k:msub><k:msub><k:mover accent=\\\"true\\\"><k:mi>ν</k:mi><k:mo stretchy=\\\"false\\\">¯</k:mo></k:mover><k:mi>e</k:mi></k:msub></k:math> pair annihilation can launch a relativistic outflow for a timescale of <o:math xmlns:o=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><o:mo>∼</o:mo><o:mn>0.1</o:mn><o:mtext> </o:mtext><o:mtext> </o:mtext><o:mi mathvariant=\\\"normal\\\">s</o:mi></o:math>, and it can be energetic enough to explain some of short-hard gamma-ray bursts and the precursors. Finally, we calculate the indicators of the fast flavor instability directly from the obtained neutrino distribution functions, which indicate that the instability can occur particularly near the equatorial region of the torus. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.023015\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.023015","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Long-term Monte Carlo-based neutrino-radiation hydrodynamics simulations for a black hole-torus system
We present our new general relativistic Monte Carlo (MC)-based neutrino radiation hydrodynamics code designed to solve axisymmetric systems with several improvements. The main improvements are as follows: (i) the development of an extended version of the implicit MC method for multispecies radiation fields; (ii) modeling of neutrino pair process rates based on a new numerically efficient and asymptotically correct fitting function for the kernel function; (iii) the implementation of new numerical limiters on the radiation-matter interaction to ensure a stable and physically correct evolution of the system. We apply our code to a black hole (BH)-torus system with a BH mass of 3M⊙, BH dimensionless spin of 0.8, and a torus mass of 0.1M⊙, which mimics a postmerger remnant of a binary neutron star merger in the case that the massive neutron star collapses to a BH within a short timescale (∼10ms). We follow the evolution of the BH-torus system up to more than 1 s with our MC-based radiation viscous-hydrodynamics code that dynamically takes into account nonthermal pair annihilation. We find that the system evolution and the various key quantities, such as neutrino luminosity, ejecta mass, torus Ye, and pair annihilation luminosity, are broadly in agreement with the results of the previous studies. We also find that the νeν¯e pair annihilation can launch a relativistic outflow for a timescale of ∼0.1s, and it can be energetic enough to explain some of short-hard gamma-ray bursts and the precursors. Finally, we calculate the indicators of the fast flavor instability directly from the obtained neutrino distribution functions, which indicate that the instability can occur particularly near the equatorial region of the torus. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.