神经形态应用中具有相变功能材料的嵌入

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2025-01-08 DOI:10.1016/j.matt.2024.10.011
Xin He , Hua Wang , Jian Sun , Xixiang Zhang , Kai Chang , Fei Xue
{"title":"神经形态应用中具有相变功能材料的嵌入","authors":"Xin He ,&nbsp;Hua Wang ,&nbsp;Jian Sun ,&nbsp;Xixiang Zhang ,&nbsp;Kai Chang ,&nbsp;Fei Xue","doi":"10.1016/j.matt.2024.10.011","DOIUrl":null,"url":null,"abstract":"<div><div>The introduction of foreign ions, atoms, or molecules into emerging functional materials is crucial for manipulating the physical properties of materials and innovating device applications. The intercalation of emerging new materials can induce multiple intrinsic changes, such as charge doping, chemical bonding, and lattice expansion, which facilitate the exploration of structural phase transformations, the tuning of symmetry-breaking-related physics, and the creation of brain-inspired advanced devices. Moreover, incorporating various hosts and intercalants enables a series of crystal structures with a rich spectrum of characteristics, greatly expanding the scope and fundamental understanding of existing materials. Here, we summarize typically used methods for the intercalation of functional materials. We highlight recent progress in intercalation-based phase transitions and their emerging physics (i.e., ferroelectric, magnetic, insulator-metal, superconducting, and charge-density-wave phase transitions). We discuss prospective device applications for intercalation-based phase transitions (i.e., neuromorphic devices). Finally, we provide potential future research lines for promoting further development of intercalation-based phase transitions.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"8 1","pages":"Article 101893"},"PeriodicalIF":17.3000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intercalation of functional materials with phase transitions for neuromorphic applications\",\"authors\":\"Xin He ,&nbsp;Hua Wang ,&nbsp;Jian Sun ,&nbsp;Xixiang Zhang ,&nbsp;Kai Chang ,&nbsp;Fei Xue\",\"doi\":\"10.1016/j.matt.2024.10.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The introduction of foreign ions, atoms, or molecules into emerging functional materials is crucial for manipulating the physical properties of materials and innovating device applications. The intercalation of emerging new materials can induce multiple intrinsic changes, such as charge doping, chemical bonding, and lattice expansion, which facilitate the exploration of structural phase transformations, the tuning of symmetry-breaking-related physics, and the creation of brain-inspired advanced devices. Moreover, incorporating various hosts and intercalants enables a series of crystal structures with a rich spectrum of characteristics, greatly expanding the scope and fundamental understanding of existing materials. Here, we summarize typically used methods for the intercalation of functional materials. We highlight recent progress in intercalation-based phase transitions and their emerging physics (i.e., ferroelectric, magnetic, insulator-metal, superconducting, and charge-density-wave phase transitions). We discuss prospective device applications for intercalation-based phase transitions (i.e., neuromorphic devices). Finally, we provide potential future research lines for promoting further development of intercalation-based phase transitions.</div></div>\",\"PeriodicalId\":388,\"journal\":{\"name\":\"Matter\",\"volume\":\"8 1\",\"pages\":\"Article 101893\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590238524005381\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238524005381","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

将外来离子、原子或分子引入新兴功能材料中,对于操纵材料的物理性质和创新器件应用至关重要。新兴材料的嵌入可以诱导多种内在变化,如电荷掺杂,化学键和晶格扩展,这有助于探索结构相变,调整对称性破坏相关物理,以及创造受大脑启发的先进设备。此外,结合各种宿主和插层剂可以实现一系列具有丰富特征谱的晶体结构,极大地扩展了现有材料的范围和基本理解。在这里,我们总结了常用的功能材料插入方法。我们强调了基于插层相变及其新兴物理(即铁电、磁性、绝缘体-金属、超导和电荷密度波相变)的最新进展。我们讨论了基于插层相变的潜在设备应用(即神经形态设备)。最后,我们提供了潜在的未来研究方向,以促进基于插层相变的进一步发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intercalation of functional materials with phase transitions for neuromorphic applications
The introduction of foreign ions, atoms, or molecules into emerging functional materials is crucial for manipulating the physical properties of materials and innovating device applications. The intercalation of emerging new materials can induce multiple intrinsic changes, such as charge doping, chemical bonding, and lattice expansion, which facilitate the exploration of structural phase transformations, the tuning of symmetry-breaking-related physics, and the creation of brain-inspired advanced devices. Moreover, incorporating various hosts and intercalants enables a series of crystal structures with a rich spectrum of characteristics, greatly expanding the scope and fundamental understanding of existing materials. Here, we summarize typically used methods for the intercalation of functional materials. We highlight recent progress in intercalation-based phase transitions and their emerging physics (i.e., ferroelectric, magnetic, insulator-metal, superconducting, and charge-density-wave phase transitions). We discuss prospective device applications for intercalation-based phase transitions (i.e., neuromorphic devices). Finally, we provide potential future research lines for promoting further development of intercalation-based phase transitions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信