Limei Wang, Yue Sun, Jakob Seidlitz, Richard A. I. Bethlehem, Aaron Alexander-Bloch, Lena Dorfschmidt, Gang Li, Jed T. Elison, Weili Lin, Li Wang
{"title":"一个寿命可推广的头骨剥离模型磁共振图像,利用大脑地图集的先验知识","authors":"Limei Wang, Yue Sun, Jakob Seidlitz, Richard A. I. Bethlehem, Aaron Alexander-Bloch, Lena Dorfschmidt, Gang Li, Jed T. Elison, Weili Lin, Li Wang","doi":"10.1038/s41551-024-01337-w","DOIUrl":null,"url":null,"abstract":"<p>In magnetic resonance imaging of the brain, an imaging-preprocessing step removes the skull and other non-brain tissue from the images. But methods for such a skull-stripping process often struggle with large data heterogeneity across medical sites and with dynamic changes in tissue contrast across lifespans. Here we report a skull-stripping model for magnetic resonance images that generalizes across lifespans by leveraging personalized priors from brain atlases. The model consists of a brain extraction module that provides an initial estimation of the brain tissue on an image, and a registration module that derives a personalized prior from an age-specific atlas. The model is substantially more accurate than state-of-the-art skull-stripping methods, as we show with a large and diverse dataset of 21,334 lifespans acquired from 18 sites with various imaging protocols and scanners, and it generates naturally consistent and seamless lifespan changes in brain volume, faithfully charting the underlying biological processes of brain development and ageing.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"24 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A lifespan-generalizable skull-stripping model for magnetic resonance images that leverages prior knowledge from brain atlases\",\"authors\":\"Limei Wang, Yue Sun, Jakob Seidlitz, Richard A. I. Bethlehem, Aaron Alexander-Bloch, Lena Dorfschmidt, Gang Li, Jed T. Elison, Weili Lin, Li Wang\",\"doi\":\"10.1038/s41551-024-01337-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In magnetic resonance imaging of the brain, an imaging-preprocessing step removes the skull and other non-brain tissue from the images. But methods for such a skull-stripping process often struggle with large data heterogeneity across medical sites and with dynamic changes in tissue contrast across lifespans. Here we report a skull-stripping model for magnetic resonance images that generalizes across lifespans by leveraging personalized priors from brain atlases. The model consists of a brain extraction module that provides an initial estimation of the brain tissue on an image, and a registration module that derives a personalized prior from an age-specific atlas. The model is substantially more accurate than state-of-the-art skull-stripping methods, as we show with a large and diverse dataset of 21,334 lifespans acquired from 18 sites with various imaging protocols and scanners, and it generates naturally consistent and seamless lifespan changes in brain volume, faithfully charting the underlying biological processes of brain development and ageing.</p>\",\"PeriodicalId\":19063,\"journal\":{\"name\":\"Nature Biomedical Engineering\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41551-024-01337-w\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-024-01337-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A lifespan-generalizable skull-stripping model for magnetic resonance images that leverages prior knowledge from brain atlases
In magnetic resonance imaging of the brain, an imaging-preprocessing step removes the skull and other non-brain tissue from the images. But methods for such a skull-stripping process often struggle with large data heterogeneity across medical sites and with dynamic changes in tissue contrast across lifespans. Here we report a skull-stripping model for magnetic resonance images that generalizes across lifespans by leveraging personalized priors from brain atlases. The model consists of a brain extraction module that provides an initial estimation of the brain tissue on an image, and a registration module that derives a personalized prior from an age-specific atlas. The model is substantially more accurate than state-of-the-art skull-stripping methods, as we show with a large and diverse dataset of 21,334 lifespans acquired from 18 sites with various imaging protocols and scanners, and it generates naturally consistent and seamless lifespan changes in brain volume, faithfully charting the underlying biological processes of brain development and ageing.
期刊介绍:
Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.