{"title":"数字光通信信号诱导8190公里远距离半导体-激光混沌同步的实验论证","authors":"Anbang Wang, Junli Wang, Lin Jiang, Longsheng Wang, Yuncai Wang, Lianshan Yan, Yuwen Qin","doi":"10.1038/s41377-024-01702-z","DOIUrl":null,"url":null,"abstract":"<p>Common-signal-induced synchronization of semiconductor lasers have promising applications in physical-layer secure transmission with high speed and compatibility with the current fiber communication. Here, we propose an ultra-long-distance laser synchronization scheme by utilizing random digital optical communication signal as the common drive signal. By utilizing the long-haul optical coherent communication techniques, high-fidelity fiber transmission of the digital drive can be achieved and thus ultra-long-distance synchronization is expected. Experiments were implemented with distributed feedback lasers injected by a random-digital phase-modulated drive light. Results show that high-quality synchronization can be achieved as the drive signal rate is larger than the laser relaxation frequency and the transmission bit error ratio is below a critical value. Chaos synchronization over 8191-km fiber transmission was experimentally achieved. Compared to traditional common-signal-induced synchronization using analog drive signal such as chaos, the distance is increased by 8 times, and complicated hardware devices for channel impairment compensation are no longer required. In addition, the proposed method does not sacrifice communication capacity like traditional methods which need a channel to transmit analog drive signal. It is therefore believed that this common-digital-signal induced laser synchronization paves a way for secure backbone and submarine transmission.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"19 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental demonstration of 8190-km long-haul semiconductor-laser chaos synchronization induced by digital optical communication signal\",\"authors\":\"Anbang Wang, Junli Wang, Lin Jiang, Longsheng Wang, Yuncai Wang, Lianshan Yan, Yuwen Qin\",\"doi\":\"10.1038/s41377-024-01702-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Common-signal-induced synchronization of semiconductor lasers have promising applications in physical-layer secure transmission with high speed and compatibility with the current fiber communication. Here, we propose an ultra-long-distance laser synchronization scheme by utilizing random digital optical communication signal as the common drive signal. By utilizing the long-haul optical coherent communication techniques, high-fidelity fiber transmission of the digital drive can be achieved and thus ultra-long-distance synchronization is expected. Experiments were implemented with distributed feedback lasers injected by a random-digital phase-modulated drive light. Results show that high-quality synchronization can be achieved as the drive signal rate is larger than the laser relaxation frequency and the transmission bit error ratio is below a critical value. Chaos synchronization over 8191-km fiber transmission was experimentally achieved. Compared to traditional common-signal-induced synchronization using analog drive signal such as chaos, the distance is increased by 8 times, and complicated hardware devices for channel impairment compensation are no longer required. In addition, the proposed method does not sacrifice communication capacity like traditional methods which need a channel to transmit analog drive signal. It is therefore believed that this common-digital-signal induced laser synchronization paves a way for secure backbone and submarine transmission.</p>\",\"PeriodicalId\":18069,\"journal\":{\"name\":\"Light-Science & Applications\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":20.6000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Light-Science & Applications\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1038/s41377-024-01702-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01702-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Experimental demonstration of 8190-km long-haul semiconductor-laser chaos synchronization induced by digital optical communication signal
Common-signal-induced synchronization of semiconductor lasers have promising applications in physical-layer secure transmission with high speed and compatibility with the current fiber communication. Here, we propose an ultra-long-distance laser synchronization scheme by utilizing random digital optical communication signal as the common drive signal. By utilizing the long-haul optical coherent communication techniques, high-fidelity fiber transmission of the digital drive can be achieved and thus ultra-long-distance synchronization is expected. Experiments were implemented with distributed feedback lasers injected by a random-digital phase-modulated drive light. Results show that high-quality synchronization can be achieved as the drive signal rate is larger than the laser relaxation frequency and the transmission bit error ratio is below a critical value. Chaos synchronization over 8191-km fiber transmission was experimentally achieved. Compared to traditional common-signal-induced synchronization using analog drive signal such as chaos, the distance is increased by 8 times, and complicated hardware devices for channel impairment compensation are no longer required. In addition, the proposed method does not sacrifice communication capacity like traditional methods which need a channel to transmit analog drive signal. It is therefore believed that this common-digital-signal induced laser synchronization paves a way for secure backbone and submarine transmission.