基于档案的无参数多目标Rao-DE桁架结构双目标优化算法

IF 4.4 2区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Viet-Hung Truong , Sawekchai Tangaramvong , Hoang-Anh Pham , Manh-Cuong Nguyen , Rut Su
{"title":"基于档案的无参数多目标Rao-DE桁架结构双目标优化算法","authors":"Viet-Hung Truong ,&nbsp;Sawekchai Tangaramvong ,&nbsp;Hoang-Anh Pham ,&nbsp;Manh-Cuong Nguyen ,&nbsp;Rut Su","doi":"10.1016/j.compstruc.2025.107647","DOIUrl":null,"url":null,"abstract":"<div><div>Metaheuristic algorithms have proven effective for complex optimization problems, including truss design, yet many require specific parameter settings, leading to increased complexity. This paper proposes an archive-based parameter-free multi-objective Rao-Differential Evolution (APMORD) algorithm for bi-objective optimization of truss design problems. APMORD simplifies the process by integrating the Rao-1 mutation technique with the differential evolution (DE) framework, eliminating the need for specific parameter setups. An external best archive (BA) enhances the diversity and distribution of the Pareto set, while the dynamic archive-based method (dynABM) adjusts the population size to improve optimization efficiency. The performance of APMORD is evaluated across eight classical truss structure problems using several indicators, showcasing its superior effectiveness compared to recent metaheuristic techniques, especially in achieving a broader spread of optimal solutions. Furthermore, sensitivity analysis indicates that decreasing the population size while increasing the archive size significantly enhances the algorithm’s performance and improves the quality of the optimal solution set. These findings highlight APMORD’s contribution to advancing optimization strategies for truss structures, emphasizing its efficiency and adaptability in various optimization scenarios.</div></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":"308 ","pages":"Article 107647"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An efficient archive-based parameter-free multi-objective Rao-DE algorithm for bi-objective optimization of truss structures\",\"authors\":\"Viet-Hung Truong ,&nbsp;Sawekchai Tangaramvong ,&nbsp;Hoang-Anh Pham ,&nbsp;Manh-Cuong Nguyen ,&nbsp;Rut Su\",\"doi\":\"10.1016/j.compstruc.2025.107647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Metaheuristic algorithms have proven effective for complex optimization problems, including truss design, yet many require specific parameter settings, leading to increased complexity. This paper proposes an archive-based parameter-free multi-objective Rao-Differential Evolution (APMORD) algorithm for bi-objective optimization of truss design problems. APMORD simplifies the process by integrating the Rao-1 mutation technique with the differential evolution (DE) framework, eliminating the need for specific parameter setups. An external best archive (BA) enhances the diversity and distribution of the Pareto set, while the dynamic archive-based method (dynABM) adjusts the population size to improve optimization efficiency. The performance of APMORD is evaluated across eight classical truss structure problems using several indicators, showcasing its superior effectiveness compared to recent metaheuristic techniques, especially in achieving a broader spread of optimal solutions. Furthermore, sensitivity analysis indicates that decreasing the population size while increasing the archive size significantly enhances the algorithm’s performance and improves the quality of the optimal solution set. These findings highlight APMORD’s contribution to advancing optimization strategies for truss structures, emphasizing its efficiency and adaptability in various optimization scenarios.</div></div>\",\"PeriodicalId\":50626,\"journal\":{\"name\":\"Computers & Structures\",\"volume\":\"308 \",\"pages\":\"Article 107647\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045794925000057\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045794925000057","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

元启发式算法已被证明对复杂的优化问题有效,包括桁架设计,但许多需要特定的参数设置,导致复杂性增加。提出了一种基于档案的无参数多目标Rao-Differential Evolution (APMORD)算法,用于桁架设计问题的双目标优化。APMORD通过将Rao-1突变技术与差分进化(DE)框架相结合,简化了这一过程,消除了对特定参数设置的需要。外部最佳档案(BA)增强了Pareto集合的多样性和分布,动态档案方法(dynABM)通过调整种群大小来提高优化效率。APMORD的性能通过八个经典桁架结构问题使用几个指标进行评估,与最近的元启发式技术相比,显示出其优越的有效性,特别是在实现更广泛的最优解方面。此外,灵敏度分析表明,在减小种群大小的同时增加归档大小可以显著提高算法的性能,提高最优解集的质量。这些发现突出了APMORD对桁架结构优化策略的贡献,强调了其在各种优化场景下的效率和适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient archive-based parameter-free multi-objective Rao-DE algorithm for bi-objective optimization of truss structures
Metaheuristic algorithms have proven effective for complex optimization problems, including truss design, yet many require specific parameter settings, leading to increased complexity. This paper proposes an archive-based parameter-free multi-objective Rao-Differential Evolution (APMORD) algorithm for bi-objective optimization of truss design problems. APMORD simplifies the process by integrating the Rao-1 mutation technique with the differential evolution (DE) framework, eliminating the need for specific parameter setups. An external best archive (BA) enhances the diversity and distribution of the Pareto set, while the dynamic archive-based method (dynABM) adjusts the population size to improve optimization efficiency. The performance of APMORD is evaluated across eight classical truss structure problems using several indicators, showcasing its superior effectiveness compared to recent metaheuristic techniques, especially in achieving a broader spread of optimal solutions. Furthermore, sensitivity analysis indicates that decreasing the population size while increasing the archive size significantly enhances the algorithm’s performance and improves the quality of the optimal solution set. These findings highlight APMORD’s contribution to advancing optimization strategies for truss structures, emphasizing its efficiency and adaptability in various optimization scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Structures
Computers & Structures 工程技术-工程:土木
CiteScore
8.80
自引率
6.40%
发文量
122
审稿时长
33 days
期刊介绍: Computers & Structures publishes advances in the development and use of computational methods for the solution of problems in engineering and the sciences. The range of appropriate contributions is wide, and includes papers on establishing appropriate mathematical models and their numerical solution in all areas of mechanics. The journal also includes articles that present a substantial review of a field in the topics of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信