土壤水分胁迫下叶片气孔-光合能力调节的气孔优化模型

IF 6.5 1区 农林科学 Q1 AGRONOMY
Yong Liu , Tiesong Hu , Rui Zhu , Qiuwen Chen , Xiang Zeng , Peiran Jing , Yifan Huang
{"title":"土壤水分胁迫下叶片气孔-光合能力调节的气孔优化模型","authors":"Yong Liu ,&nbsp;Tiesong Hu ,&nbsp;Rui Zhu ,&nbsp;Qiuwen Chen ,&nbsp;Xiang Zeng ,&nbsp;Peiran Jing ,&nbsp;Yifan Huang","doi":"10.1016/j.agwat.2024.109285","DOIUrl":null,"url":null,"abstract":"<div><div>Leaf stomatal regulation of water-carbon exchange processes plays a crucial role in the water-carbon cycle. Uncovering the response mechanism of leaf gas exchange to soil water stress is challenging due to the complex effects of both the stomatal regulation (<em>i.e.</em>, stomatal conductance, <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>) and non-stomatal regulation (<em>i.e.</em>, photosynthetic carboxylation capacity, <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>c</mi><mi>max</mi><mn>25</mn></mrow></msub></math></span>). Different from previous studies that achieved stomatal and non-stomatal regulation in stomatal optimization models by linearly simplifying or independently optimizing <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>c</mi><mi>max</mi><mn>25</mn></mrow></msub></math></span>, this study hypothesizes that <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>c</mi><mi>max</mi><mn>25</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> are co-regulated by balancing intercellular <span><math><msub><mrow><mi>CO</mi></mrow><mrow><mi>₂</mi></mrow></msub></math></span> concentration (<span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>). By adjusting stomatal opening to minimize water-carbon cost, a stomatal optimization model (SRSC model) that integrates the synergistic regulation of <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>c</mi><mi>max</mi><mn>25</mn></mrow></msub></math></span> was developed. Experimental and numerical results show that the SRSC model accurately reproduces the stomatal response to environmental changes, especially for the low soil water potential conditions <span><math><mrow><mo>(</mo><msub><mrow><mi>Ψ</mi></mrow><mrow><mi>soil</mi></mrow></msub><mo>&lt;</mo><mo>−</mo><mn>2</mn><mspace></mspace><mi>MPa</mi><mo>)</mo></mrow></math></span> compared to the previous models, which increased the <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> of <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>, photosynthetic rate (<span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>), and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> reaching 2.56 %, 1.97 %, and 9.04 %, respectively. Additionally, the SRSC model reasonably predicted a coordinated decline in <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>c</mi><mi>max</mi><mn>25</mn></mrow></msub></math></span> and concurrently mitigated the classical models that simulate <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> and leaf water potential responses deviating from the actual values under drought conditions. More importantly, the SRSC model revealed that experiencing drought and flooding stresses in rice improved intrinsic water use efficiency by increasing photosynthetic capacity. This study refines the application of the stomatal optimization model and enhances the mechanistic understanding of the stomatal optimization model to a certain extent.</div></div>","PeriodicalId":7634,"journal":{"name":"Agricultural Water Management","volume":"308 ","pages":"Article 109285"},"PeriodicalIF":6.5000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A stomatal optimization model integrating leaf stomata-photosynthetic capacity regulation in response to soil water stress\",\"authors\":\"Yong Liu ,&nbsp;Tiesong Hu ,&nbsp;Rui Zhu ,&nbsp;Qiuwen Chen ,&nbsp;Xiang Zeng ,&nbsp;Peiran Jing ,&nbsp;Yifan Huang\",\"doi\":\"10.1016/j.agwat.2024.109285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Leaf stomatal regulation of water-carbon exchange processes plays a crucial role in the water-carbon cycle. Uncovering the response mechanism of leaf gas exchange to soil water stress is challenging due to the complex effects of both the stomatal regulation (<em>i.e.</em>, stomatal conductance, <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>) and non-stomatal regulation (<em>i.e.</em>, photosynthetic carboxylation capacity, <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>c</mi><mi>max</mi><mn>25</mn></mrow></msub></math></span>). Different from previous studies that achieved stomatal and non-stomatal regulation in stomatal optimization models by linearly simplifying or independently optimizing <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>c</mi><mi>max</mi><mn>25</mn></mrow></msub></math></span>, this study hypothesizes that <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>c</mi><mi>max</mi><mn>25</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> are co-regulated by balancing intercellular <span><math><msub><mrow><mi>CO</mi></mrow><mrow><mi>₂</mi></mrow></msub></math></span> concentration (<span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>). By adjusting stomatal opening to minimize water-carbon cost, a stomatal optimization model (SRSC model) that integrates the synergistic regulation of <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>c</mi><mi>max</mi><mn>25</mn></mrow></msub></math></span> was developed. Experimental and numerical results show that the SRSC model accurately reproduces the stomatal response to environmental changes, especially for the low soil water potential conditions <span><math><mrow><mo>(</mo><msub><mrow><mi>Ψ</mi></mrow><mrow><mi>soil</mi></mrow></msub><mo>&lt;</mo><mo>−</mo><mn>2</mn><mspace></mspace><mi>MPa</mi><mo>)</mo></mrow></math></span> compared to the previous models, which increased the <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> of <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>, photosynthetic rate (<span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>), and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> reaching 2.56 %, 1.97 %, and 9.04 %, respectively. Additionally, the SRSC model reasonably predicted a coordinated decline in <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>c</mi><mi>max</mi><mn>25</mn></mrow></msub></math></span> and concurrently mitigated the classical models that simulate <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> and leaf water potential responses deviating from the actual values under drought conditions. More importantly, the SRSC model revealed that experiencing drought and flooding stresses in rice improved intrinsic water use efficiency by increasing photosynthetic capacity. This study refines the application of the stomatal optimization model and enhances the mechanistic understanding of the stomatal optimization model to a certain extent.</div></div>\",\"PeriodicalId\":7634,\"journal\":{\"name\":\"Agricultural Water Management\",\"volume\":\"308 \",\"pages\":\"Article 109285\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agricultural Water Management\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378377424006218\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Water Management","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378377424006218","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

叶片气孔对水碳交换过程的调节在水碳循环中起着至关重要的作用。由于气孔调节(如气孔导度,gs)和非气孔调节(如光合羧化能力,Vcmax25)的复杂作用,揭示叶片气体交换对土壤水分胁迫的响应机制具有挑战性。与以往研究通过线性简化或独立优化Vcmax25实现气孔优化模型的气孔和非气孔调节不同,本研究假设Vcmax25和gs通过平衡细胞间CO₂浓度(Ci)共同调节。通过调节气孔开度使水碳成本最小化,建立了gs和Vcmax25协同调节的气孔优化模型(SRSC模型)。实验和数值结果表明,与以往模型相比,SRSC模型更准确地再现了气孔对环境变化的响应,特别是在低土壤水势条件下(Ψsoil<−2MPa),使gs、光合速率(An)和Ci的R2分别达到2.56%、1.97%和9.04%。此外,SRSC模型合理地预测了干旱条件下gs和Vcmax25的协同下降,同时减轻了经典模型对gs和叶片水势响应的模拟偏离实际值的影响。更重要的是,SRSC模型揭示了水稻经历干旱和洪涝胁迫通过增加光合能力提高了内在水分利用效率。本研究细化了气孔优化模型的应用,在一定程度上增强了对气孔优化模型的机理认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A stomatal optimization model integrating leaf stomata-photosynthetic capacity regulation in response to soil water stress
Leaf stomatal regulation of water-carbon exchange processes plays a crucial role in the water-carbon cycle. Uncovering the response mechanism of leaf gas exchange to soil water stress is challenging due to the complex effects of both the stomatal regulation (i.e., stomatal conductance, gs) and non-stomatal regulation (i.e., photosynthetic carboxylation capacity, Vcmax25). Different from previous studies that achieved stomatal and non-stomatal regulation in stomatal optimization models by linearly simplifying or independently optimizing Vcmax25, this study hypothesizes that Vcmax25 and gs are co-regulated by balancing intercellular CO concentration (Ci). By adjusting stomatal opening to minimize water-carbon cost, a stomatal optimization model (SRSC model) that integrates the synergistic regulation of gs and Vcmax25 was developed. Experimental and numerical results show that the SRSC model accurately reproduces the stomatal response to environmental changes, especially for the low soil water potential conditions (Ψsoil<2MPa) compared to the previous models, which increased the R2 of gs, photosynthetic rate (An), and Ci reaching 2.56 %, 1.97 %, and 9.04 %, respectively. Additionally, the SRSC model reasonably predicted a coordinated decline in gs and Vcmax25 and concurrently mitigated the classical models that simulate gs and leaf water potential responses deviating from the actual values under drought conditions. More importantly, the SRSC model revealed that experiencing drought and flooding stresses in rice improved intrinsic water use efficiency by increasing photosynthetic capacity. This study refines the application of the stomatal optimization model and enhances the mechanistic understanding of the stomatal optimization model to a certain extent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Agricultural Water Management
Agricultural Water Management 农林科学-农艺学
CiteScore
12.10
自引率
14.90%
发文量
648
审稿时长
4.9 months
期刊介绍: Agricultural Water Management publishes papers of international significance relating to the science, economics, and policy of agricultural water management. In all cases, manuscripts must address implications and provide insight regarding agricultural water management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信