Yong Liu , Tiesong Hu , Rui Zhu , Qiuwen Chen , Xiang Zeng , Peiran Jing , Yifan Huang
{"title":"土壤水分胁迫下叶片气孔-光合能力调节的气孔优化模型","authors":"Yong Liu , Tiesong Hu , Rui Zhu , Qiuwen Chen , Xiang Zeng , Peiran Jing , Yifan Huang","doi":"10.1016/j.agwat.2024.109285","DOIUrl":null,"url":null,"abstract":"<div><div>Leaf stomatal regulation of water-carbon exchange processes plays a crucial role in the water-carbon cycle. Uncovering the response mechanism of leaf gas exchange to soil water stress is challenging due to the complex effects of both the stomatal regulation (<em>i.e.</em>, stomatal conductance, <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>) and non-stomatal regulation (<em>i.e.</em>, photosynthetic carboxylation capacity, <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>c</mi><mi>max</mi><mn>25</mn></mrow></msub></math></span>). Different from previous studies that achieved stomatal and non-stomatal regulation in stomatal optimization models by linearly simplifying or independently optimizing <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>c</mi><mi>max</mi><mn>25</mn></mrow></msub></math></span>, this study hypothesizes that <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>c</mi><mi>max</mi><mn>25</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> are co-regulated by balancing intercellular <span><math><msub><mrow><mi>CO</mi></mrow><mrow><mi>₂</mi></mrow></msub></math></span> concentration (<span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>). By adjusting stomatal opening to minimize water-carbon cost, a stomatal optimization model (SRSC model) that integrates the synergistic regulation of <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>c</mi><mi>max</mi><mn>25</mn></mrow></msub></math></span> was developed. Experimental and numerical results show that the SRSC model accurately reproduces the stomatal response to environmental changes, especially for the low soil water potential conditions <span><math><mrow><mo>(</mo><msub><mrow><mi>Ψ</mi></mrow><mrow><mi>soil</mi></mrow></msub><mo><</mo><mo>−</mo><mn>2</mn><mspace></mspace><mi>MPa</mi><mo>)</mo></mrow></math></span> compared to the previous models, which increased the <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> of <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>, photosynthetic rate (<span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>), and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> reaching 2.56 %, 1.97 %, and 9.04 %, respectively. Additionally, the SRSC model reasonably predicted a coordinated decline in <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>c</mi><mi>max</mi><mn>25</mn></mrow></msub></math></span> and concurrently mitigated the classical models that simulate <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> and leaf water potential responses deviating from the actual values under drought conditions. More importantly, the SRSC model revealed that experiencing drought and flooding stresses in rice improved intrinsic water use efficiency by increasing photosynthetic capacity. This study refines the application of the stomatal optimization model and enhances the mechanistic understanding of the stomatal optimization model to a certain extent.</div></div>","PeriodicalId":7634,"journal":{"name":"Agricultural Water Management","volume":"308 ","pages":"Article 109285"},"PeriodicalIF":6.5000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A stomatal optimization model integrating leaf stomata-photosynthetic capacity regulation in response to soil water stress\",\"authors\":\"Yong Liu , Tiesong Hu , Rui Zhu , Qiuwen Chen , Xiang Zeng , Peiran Jing , Yifan Huang\",\"doi\":\"10.1016/j.agwat.2024.109285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Leaf stomatal regulation of water-carbon exchange processes plays a crucial role in the water-carbon cycle. Uncovering the response mechanism of leaf gas exchange to soil water stress is challenging due to the complex effects of both the stomatal regulation (<em>i.e.</em>, stomatal conductance, <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>) and non-stomatal regulation (<em>i.e.</em>, photosynthetic carboxylation capacity, <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>c</mi><mi>max</mi><mn>25</mn></mrow></msub></math></span>). Different from previous studies that achieved stomatal and non-stomatal regulation in stomatal optimization models by linearly simplifying or independently optimizing <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>c</mi><mi>max</mi><mn>25</mn></mrow></msub></math></span>, this study hypothesizes that <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>c</mi><mi>max</mi><mn>25</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> are co-regulated by balancing intercellular <span><math><msub><mrow><mi>CO</mi></mrow><mrow><mi>₂</mi></mrow></msub></math></span> concentration (<span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>). By adjusting stomatal opening to minimize water-carbon cost, a stomatal optimization model (SRSC model) that integrates the synergistic regulation of <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>c</mi><mi>max</mi><mn>25</mn></mrow></msub></math></span> was developed. Experimental and numerical results show that the SRSC model accurately reproduces the stomatal response to environmental changes, especially for the low soil water potential conditions <span><math><mrow><mo>(</mo><msub><mrow><mi>Ψ</mi></mrow><mrow><mi>soil</mi></mrow></msub><mo><</mo><mo>−</mo><mn>2</mn><mspace></mspace><mi>MPa</mi><mo>)</mo></mrow></math></span> compared to the previous models, which increased the <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> of <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>, photosynthetic rate (<span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>), and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> reaching 2.56 %, 1.97 %, and 9.04 %, respectively. Additionally, the SRSC model reasonably predicted a coordinated decline in <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>c</mi><mi>max</mi><mn>25</mn></mrow></msub></math></span> and concurrently mitigated the classical models that simulate <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> and leaf water potential responses deviating from the actual values under drought conditions. More importantly, the SRSC model revealed that experiencing drought and flooding stresses in rice improved intrinsic water use efficiency by increasing photosynthetic capacity. This study refines the application of the stomatal optimization model and enhances the mechanistic understanding of the stomatal optimization model to a certain extent.</div></div>\",\"PeriodicalId\":7634,\"journal\":{\"name\":\"Agricultural Water Management\",\"volume\":\"308 \",\"pages\":\"Article 109285\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agricultural Water Management\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378377424006218\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Water Management","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378377424006218","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
A stomatal optimization model integrating leaf stomata-photosynthetic capacity regulation in response to soil water stress
Leaf stomatal regulation of water-carbon exchange processes plays a crucial role in the water-carbon cycle. Uncovering the response mechanism of leaf gas exchange to soil water stress is challenging due to the complex effects of both the stomatal regulation (i.e., stomatal conductance, ) and non-stomatal regulation (i.e., photosynthetic carboxylation capacity, ). Different from previous studies that achieved stomatal and non-stomatal regulation in stomatal optimization models by linearly simplifying or independently optimizing , this study hypothesizes that and are co-regulated by balancing intercellular concentration (). By adjusting stomatal opening to minimize water-carbon cost, a stomatal optimization model (SRSC model) that integrates the synergistic regulation of and was developed. Experimental and numerical results show that the SRSC model accurately reproduces the stomatal response to environmental changes, especially for the low soil water potential conditions compared to the previous models, which increased the of , photosynthetic rate (), and reaching 2.56 %, 1.97 %, and 9.04 %, respectively. Additionally, the SRSC model reasonably predicted a coordinated decline in and and concurrently mitigated the classical models that simulate and leaf water potential responses deviating from the actual values under drought conditions. More importantly, the SRSC model revealed that experiencing drought and flooding stresses in rice improved intrinsic water use efficiency by increasing photosynthetic capacity. This study refines the application of the stomatal optimization model and enhances the mechanistic understanding of the stomatal optimization model to a certain extent.
期刊介绍:
Agricultural Water Management publishes papers of international significance relating to the science, economics, and policy of agricultural water management. In all cases, manuscripts must address implications and provide insight regarding agricultural water management.