非晶伊鲁替尼热稳定性表征

IF 3.5 3区 化学 Q2 CHEMISTRY, APPLIED
Dan Trunov, Jan Ižovský, Josef Beranek, Ondřej Dammer, Miroslav Šoóš
{"title":"非晶伊鲁替尼热稳定性表征","authors":"Dan Trunov, Jan Ižovský, Josef Beranek, Ondřej Dammer, Miroslav Šoóš","doi":"10.1021/acs.oprd.4c00299","DOIUrl":null,"url":null,"abstract":"The choice of method for drug amorphization depends on various factors, including the physicochemical properties of the active pharmaceutical ingredients, the desired formulation, and scalability requirements. It is often important to consider a combination of methods or the use of excipients to further enhance the stability and performance of the amorphous drug. This study presents a comparison of techniques including melt quench, hot melt extrusion, solvent evaporation, ball milling, and lyophilization used for the preparation of amorphous ibrutinib. The amorphous material was thoroughly investigated using numerous techniques to examine changes in the physicochemical properties, stability, and degradation pathways of the drug product. During the examination, the temperature was discovered to be a key parameter for controlling the solubility and permeability of ibrutinib, which is influenced by the presence of the degradation product. We found that this degradation product could potentially polymerize and increase the molecular weight. The quantity, polymerization rate, and structure of the impurity can be regulated by the temperature variation during the amorphization processes. Additionally, the molecular weight of the degradation product was determined using Zimm plot analysis, which appeared for the first time in the literature for molecules of this category.","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"98 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of Amorphous Ibrutinib Thermal Stability\",\"authors\":\"Dan Trunov, Jan Ižovský, Josef Beranek, Ondřej Dammer, Miroslav Šoóš\",\"doi\":\"10.1021/acs.oprd.4c00299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The choice of method for drug amorphization depends on various factors, including the physicochemical properties of the active pharmaceutical ingredients, the desired formulation, and scalability requirements. It is often important to consider a combination of methods or the use of excipients to further enhance the stability and performance of the amorphous drug. This study presents a comparison of techniques including melt quench, hot melt extrusion, solvent evaporation, ball milling, and lyophilization used for the preparation of amorphous ibrutinib. The amorphous material was thoroughly investigated using numerous techniques to examine changes in the physicochemical properties, stability, and degradation pathways of the drug product. During the examination, the temperature was discovered to be a key parameter for controlling the solubility and permeability of ibrutinib, which is influenced by the presence of the degradation product. We found that this degradation product could potentially polymerize and increase the molecular weight. The quantity, polymerization rate, and structure of the impurity can be regulated by the temperature variation during the amorphization processes. Additionally, the molecular weight of the degradation product was determined using Zimm plot analysis, which appeared for the first time in the literature for molecules of this category.\",\"PeriodicalId\":55,\"journal\":{\"name\":\"Organic Process Research & Development\",\"volume\":\"98 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Process Research & Development\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.oprd.4c00299\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Process Research & Development","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.oprd.4c00299","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

药物非晶化方法的选择取决于多种因素,包括活性药物成分的物理化学性质、所需的配方和可扩展性要求。为了进一步提高非晶态药物的稳定性和性能,通常需要考虑多种方法的结合或辅料的使用。本研究介绍了包括熔体淬火、热熔挤压、溶剂蒸发、球磨和冻干等技术用于制备无定形依鲁替尼的比较。使用多种技术对非晶材料进行了彻底的研究,以检查药物产品的物理化学性质,稳定性和降解途径的变化。在检测过程中,发现温度是控制依鲁替尼溶解度和渗透性的关键参数,而溶解度和渗透性受降解产物存在的影响。我们发现这种降解产物具有潜在的聚合性,并增加了分子量。在非晶化过程中,杂质的数量、聚合速率和结构可以通过温度变化来调节。此外,利用Zimm图分析确定了降解产物的分子量,这在文献中首次出现对该类分子的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Characterization of Amorphous Ibrutinib Thermal Stability

Characterization of Amorphous Ibrutinib Thermal Stability
The choice of method for drug amorphization depends on various factors, including the physicochemical properties of the active pharmaceutical ingredients, the desired formulation, and scalability requirements. It is often important to consider a combination of methods or the use of excipients to further enhance the stability and performance of the amorphous drug. This study presents a comparison of techniques including melt quench, hot melt extrusion, solvent evaporation, ball milling, and lyophilization used for the preparation of amorphous ibrutinib. The amorphous material was thoroughly investigated using numerous techniques to examine changes in the physicochemical properties, stability, and degradation pathways of the drug product. During the examination, the temperature was discovered to be a key parameter for controlling the solubility and permeability of ibrutinib, which is influenced by the presence of the degradation product. We found that this degradation product could potentially polymerize and increase the molecular weight. The quantity, polymerization rate, and structure of the impurity can be regulated by the temperature variation during the amorphization processes. Additionally, the molecular weight of the degradation product was determined using Zimm plot analysis, which appeared for the first time in the literature for molecules of this category.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.90
自引率
14.70%
发文量
251
审稿时长
2 months
期刊介绍: The journal Organic Process Research & Development serves as a communication tool between industrial chemists and chemists working in universities and research institutes. As such, it reports original work from the broad field of industrial process chemistry but also presents academic results that are relevant, or potentially relevant, to industrial applications. Process chemistry is the science that enables the safe, environmentally benign and ultimately economical manufacturing of organic compounds that are required in larger amounts to help address the needs of society. Consequently, the Journal encompasses every aspect of organic chemistry, including all aspects of catalysis, synthetic methodology development and synthetic strategy exploration, but also includes aspects from analytical and solid-state chemistry and chemical engineering, such as work-up tools,process safety, or flow-chemistry. The goal of development and optimization of chemical reactions and processes is their transfer to a larger scale; original work describing such studies and the actual implementation on scale is highly relevant to the journal. However, studies on new developments from either industry, research institutes or academia that have not yet been demonstrated on scale, but where an industrial utility can be expected and where the study has addressed important prerequisites for a scale-up and has given confidence into the reliability and practicality of the chemistry, also serve the mission of OPR&D as a communication tool between the different contributors to the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信