{"title":"化学引导SHAPE测序(cgSHAPE-seq)揭示了靶向SARS-CoV-2 5 '非翻译区rna降解嵌合体的结合位点","authors":"Zhichao Tang, Shalakha Hegde, Siyuan Hao, Manikandan Selvaraju, Jianming Qiu, Jingxin Wang","doi":"10.1038/s41467-024-55608-w","DOIUrl":null,"url":null,"abstract":"<p>One of the hallmarks of RNA viruses is highly structured untranslated regions (UTRs) which are often essential for viral replication, transcription, or translation. In this report, we discovered a series of coumarin derivatives that bind to a four-way RNA helix called SL5 in the 5’ UTR of the SARS-CoV-2 RNA genome. To locate the binding site, we developed a sequencing-based method namely cgSHAPE-seq, in which an acylating probe was directed to crosslink with the 2’-OH group of ribose at the binding site to create read-through mutations during reverse transcription. cgSHAPE-seq unambiguously determined a bulged G in SL5 as the primary binding site, which was validated through mutagenesis and in vitro binding experiments. The coumarin derivatives were further used as a warhead in designing RNA-degrading chimeras to reduce viral RNA expression levels. The optimized RNA-degrading chimera <b>C64</b> inhibited live virus replication in lung epithelial carcinoma cells.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"22 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical-guided SHAPE sequencing (cgSHAPE-seq) informs the binding site of RNA-degrading chimeras targeting SARS-CoV-2 5’ untranslated region\",\"authors\":\"Zhichao Tang, Shalakha Hegde, Siyuan Hao, Manikandan Selvaraju, Jianming Qiu, Jingxin Wang\",\"doi\":\"10.1038/s41467-024-55608-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>One of the hallmarks of RNA viruses is highly structured untranslated regions (UTRs) which are often essential for viral replication, transcription, or translation. In this report, we discovered a series of coumarin derivatives that bind to a four-way RNA helix called SL5 in the 5’ UTR of the SARS-CoV-2 RNA genome. To locate the binding site, we developed a sequencing-based method namely cgSHAPE-seq, in which an acylating probe was directed to crosslink with the 2’-OH group of ribose at the binding site to create read-through mutations during reverse transcription. cgSHAPE-seq unambiguously determined a bulged G in SL5 as the primary binding site, which was validated through mutagenesis and in vitro binding experiments. The coumarin derivatives were further used as a warhead in designing RNA-degrading chimeras to reduce viral RNA expression levels. The optimized RNA-degrading chimera <b>C64</b> inhibited live virus replication in lung epithelial carcinoma cells.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-55608-w\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55608-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Chemical-guided SHAPE sequencing (cgSHAPE-seq) informs the binding site of RNA-degrading chimeras targeting SARS-CoV-2 5’ untranslated region
One of the hallmarks of RNA viruses is highly structured untranslated regions (UTRs) which are often essential for viral replication, transcription, or translation. In this report, we discovered a series of coumarin derivatives that bind to a four-way RNA helix called SL5 in the 5’ UTR of the SARS-CoV-2 RNA genome. To locate the binding site, we developed a sequencing-based method namely cgSHAPE-seq, in which an acylating probe was directed to crosslink with the 2’-OH group of ribose at the binding site to create read-through mutations during reverse transcription. cgSHAPE-seq unambiguously determined a bulged G in SL5 as the primary binding site, which was validated through mutagenesis and in vitro binding experiments. The coumarin derivatives were further used as a warhead in designing RNA-degrading chimeras to reduce viral RNA expression levels. The optimized RNA-degrading chimera C64 inhibited live virus replication in lung epithelial carcinoma cells.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.