静电平面内结构超润滑驱动器

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Xuanyu Huang, Xiaojian Xiang, Chuang Li, Jinhui Nie, Yifan Shao, Zhiping Xu, Quanshui Zheng
{"title":"静电平面内结构超润滑驱动器","authors":"Xuanyu Huang, Xiaojian Xiang, Chuang Li, Jinhui Nie, Yifan Shao, Zhiping Xu, Quanshui Zheng","doi":"10.1038/s41467-024-55078-0","DOIUrl":null,"url":null,"abstract":"<p>Micro actuators are widely used in NEMS/MEMS for control and sensing. However, most are designed with suspended beams anchored at fixed points, causing two main issues: restricted actuated stroke and movement modes, and reduced lifespan due to fatigue from repeated beam deformation, contact wear and stiction. Here, we develop an electrostatic in-plane actuator leveraging structural superlubric sliding interfaces, characterized by zero wear, ultralow friction, and no fixed anchor. The actuator features a micro-scale graphite flake in structural superlubric contact with silicon dioxide tracks, reducing friction from edge defects. Using the charge injection method, the structural superlubric actuator not only achieves a maximum relative actuation stroke of 82.3% of the flake size by applying voltage to buried electrodes—3.4 times larger than previously reported, but also enables controllable reciprocating actuation by adjusting the form of the bias voltage. Additionally, no visible wear was observed at the structural superlubric interface after over 10,000 sliding cycles, indicating robust reliability. Our work presents a design concept for micro actuators with high performance and durability, potentially guiding the development of many structural superlubric micro-devices.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"19 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrostatic in-plane structural superlubric actuator\",\"authors\":\"Xuanyu Huang, Xiaojian Xiang, Chuang Li, Jinhui Nie, Yifan Shao, Zhiping Xu, Quanshui Zheng\",\"doi\":\"10.1038/s41467-024-55078-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Micro actuators are widely used in NEMS/MEMS for control and sensing. However, most are designed with suspended beams anchored at fixed points, causing two main issues: restricted actuated stroke and movement modes, and reduced lifespan due to fatigue from repeated beam deformation, contact wear and stiction. Here, we develop an electrostatic in-plane actuator leveraging structural superlubric sliding interfaces, characterized by zero wear, ultralow friction, and no fixed anchor. The actuator features a micro-scale graphite flake in structural superlubric contact with silicon dioxide tracks, reducing friction from edge defects. Using the charge injection method, the structural superlubric actuator not only achieves a maximum relative actuation stroke of 82.3% of the flake size by applying voltage to buried electrodes—3.4 times larger than previously reported, but also enables controllable reciprocating actuation by adjusting the form of the bias voltage. Additionally, no visible wear was observed at the structural superlubric interface after over 10,000 sliding cycles, indicating robust reliability. Our work presents a design concept for micro actuators with high performance and durability, potentially guiding the development of many structural superlubric micro-devices.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-55078-0\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55078-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

微致动器在NEMS/MEMS中广泛用于控制和传感。然而,大多数设计都是将悬挂梁锚定在固定点上,这造成了两个主要问题:受限的驱动行程和运动模式,以及由于梁反复变形、接触磨损和粘滞造成的疲劳而缩短的寿命。在这里,我们开发了一种利用结构超润滑滑动界面的静电平面内驱动器,其特点是零磨损,超低摩擦,无固定锚。该驱动器的特点是在结构超润滑剂中与二氧化硅轨道接触的微尺度石墨片,减少了边缘缺陷的摩擦。采用电荷注入方法,通过对埋地电极施加3.4倍的电压,结构超润滑致动器实现了片状尺寸82.3%的最大相对致动行程,并且通过调节偏置电压的形式实现了可控的往复致动。此外,在超过10,000次滑动循环后,结构超润滑界面未观察到明显的磨损,表明了坚固的可靠性。我们的工作提出了一种高性能和耐用的微致动器的设计理念,有可能指导许多结构超润滑微器件的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electrostatic in-plane structural superlubric actuator

Electrostatic in-plane structural superlubric actuator

Micro actuators are widely used in NEMS/MEMS for control and sensing. However, most are designed with suspended beams anchored at fixed points, causing two main issues: restricted actuated stroke and movement modes, and reduced lifespan due to fatigue from repeated beam deformation, contact wear and stiction. Here, we develop an electrostatic in-plane actuator leveraging structural superlubric sliding interfaces, characterized by zero wear, ultralow friction, and no fixed anchor. The actuator features a micro-scale graphite flake in structural superlubric contact with silicon dioxide tracks, reducing friction from edge defects. Using the charge injection method, the structural superlubric actuator not only achieves a maximum relative actuation stroke of 82.3% of the flake size by applying voltage to buried electrodes—3.4 times larger than previously reported, but also enables controllable reciprocating actuation by adjusting the form of the bias voltage. Additionally, no visible wear was observed at the structural superlubric interface after over 10,000 sliding cycles, indicating robust reliability. Our work presents a design concept for micro actuators with high performance and durability, potentially guiding the development of many structural superlubric micro-devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信