面向少量量子位元的大规模量子优化求解

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Marco Sciorilli, Lucas Borges, Taylor L. Patti, Diego García-Martín, Giancarlo Camilo, Anima Anandkumar, Leandro Aolita
{"title":"面向少量量子位元的大规模量子优化求解","authors":"Marco Sciorilli, Lucas Borges, Taylor L. Patti, Diego García-Martín, Giancarlo Camilo, Anima Anandkumar, Leandro Aolita","doi":"10.1038/s41467-024-55346-z","DOIUrl":null,"url":null,"abstract":"<p>Quantum computers hold the promise of more efficient combinatorial optimization solvers, which could be game-changing for a broad range of applications. However, a bottleneck for materializing such advantages is that, in order to challenge classical algorithms in practice, mainstream approaches require a number of qubits prohibitively large for near-term hardware. Here we introduce a variational solver for MaxCut problems over <span>\\(m={{\\mathcal{O}}}({n}^{k})\\)</span> binary variables using only <i>n</i> qubits, with tunable <i>k</i> &gt; 1. The number of parameters and circuit depth display mild linear and sublinear scalings in <i>m</i>, respectively. Moreover, we analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature. Altogether, this leads to high quantum-solver performances. For instance, for <i>m</i> = 7000, numerical simulations produce solutions competitive in quality with state-of-the-art classical solvers. In turn, for <i>m</i> = 2000, experiments with <i>n</i> = 17 trapped-ion qubits feature MaxCut approximation ratios estimated to be beyond the hardness threshold 0.941. Our findings offer an interesting heuristics for quantum-inspired solvers as well as a promising route towards solving commercially-relevant problems on near-term quantum devices.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"98 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards large-scale quantum optimization solvers with few qubits\",\"authors\":\"Marco Sciorilli, Lucas Borges, Taylor L. Patti, Diego García-Martín, Giancarlo Camilo, Anima Anandkumar, Leandro Aolita\",\"doi\":\"10.1038/s41467-024-55346-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quantum computers hold the promise of more efficient combinatorial optimization solvers, which could be game-changing for a broad range of applications. However, a bottleneck for materializing such advantages is that, in order to challenge classical algorithms in practice, mainstream approaches require a number of qubits prohibitively large for near-term hardware. Here we introduce a variational solver for MaxCut problems over <span>\\\\(m={{\\\\mathcal{O}}}({n}^{k})\\\\)</span> binary variables using only <i>n</i> qubits, with tunable <i>k</i> &gt; 1. The number of parameters and circuit depth display mild linear and sublinear scalings in <i>m</i>, respectively. Moreover, we analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature. Altogether, this leads to high quantum-solver performances. For instance, for <i>m</i> = 7000, numerical simulations produce solutions competitive in quality with state-of-the-art classical solvers. In turn, for <i>m</i> = 2000, experiments with <i>n</i> = 17 trapped-ion qubits feature MaxCut approximation ratios estimated to be beyond the hardness threshold 0.941. Our findings offer an interesting heuristics for quantum-inspired solvers as well as a promising route towards solving commercially-relevant problems on near-term quantum devices.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"98 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-55346-z\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55346-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

量子计算机有望提供更高效的组合优化求解器,这可能会在广泛的应用中改变游戏规则。然而,实现这些优势的瓶颈是,为了在实践中挑战经典算法,主流方法需要大量的量子比特,这对于近期的硬件来说是非常大的。在这里,我们引入一个变分求解器来解决\(m={{\mathcal{O}}}({n}^{k})\)二进制变量上的MaxCut问题,它只使用n个量子位,k &gt; 1是可调的。参数的数量和电路深度分别以m为单位显示轻微的线性和次线性缩放。此外,我们分析证明了特定的量子比特高效编码带来了超多项式的贫瘠高原缓解作为内置特性。总之,这导致了高量子解算器的性能。例如,对于m = 7000,数值模拟产生的解决方案在质量上可与最先进的经典解决方案相媲美。反过来,当m = 2000时,n = 17个捕获离子量子比特的实验特征MaxCut近似比估计超过硬度阈值0.941。我们的发现为量子启发的求解者提供了一个有趣的启发,也为解决近期量子设备上的商业相关问题提供了一条有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Towards large-scale quantum optimization solvers with few qubits

Towards large-scale quantum optimization solvers with few qubits

Quantum computers hold the promise of more efficient combinatorial optimization solvers, which could be game-changing for a broad range of applications. However, a bottleneck for materializing such advantages is that, in order to challenge classical algorithms in practice, mainstream approaches require a number of qubits prohibitively large for near-term hardware. Here we introduce a variational solver for MaxCut problems over \(m={{\mathcal{O}}}({n}^{k})\) binary variables using only n qubits, with tunable k > 1. The number of parameters and circuit depth display mild linear and sublinear scalings in m, respectively. Moreover, we analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature. Altogether, this leads to high quantum-solver performances. For instance, for m = 7000, numerical simulations produce solutions competitive in quality with state-of-the-art classical solvers. In turn, for m = 2000, experiments with n = 17 trapped-ion qubits feature MaxCut approximation ratios estimated to be beyond the hardness threshold 0.941. Our findings offer an interesting heuristics for quantum-inspired solvers as well as a promising route towards solving commercially-relevant problems on near-term quantum devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信