Marco Sciorilli, Lucas Borges, Taylor L. Patti, Diego García-Martín, Giancarlo Camilo, Anima Anandkumar, Leandro Aolita
{"title":"面向少量量子位元的大规模量子优化求解","authors":"Marco Sciorilli, Lucas Borges, Taylor L. Patti, Diego García-Martín, Giancarlo Camilo, Anima Anandkumar, Leandro Aolita","doi":"10.1038/s41467-024-55346-z","DOIUrl":null,"url":null,"abstract":"<p>Quantum computers hold the promise of more efficient combinatorial optimization solvers, which could be game-changing for a broad range of applications. However, a bottleneck for materializing such advantages is that, in order to challenge classical algorithms in practice, mainstream approaches require a number of qubits prohibitively large for near-term hardware. Here we introduce a variational solver for MaxCut problems over <span>\\(m={{\\mathcal{O}}}({n}^{k})\\)</span> binary variables using only <i>n</i> qubits, with tunable <i>k</i> > 1. The number of parameters and circuit depth display mild linear and sublinear scalings in <i>m</i>, respectively. Moreover, we analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature. Altogether, this leads to high quantum-solver performances. For instance, for <i>m</i> = 7000, numerical simulations produce solutions competitive in quality with state-of-the-art classical solvers. In turn, for <i>m</i> = 2000, experiments with <i>n</i> = 17 trapped-ion qubits feature MaxCut approximation ratios estimated to be beyond the hardness threshold 0.941. Our findings offer an interesting heuristics for quantum-inspired solvers as well as a promising route towards solving commercially-relevant problems on near-term quantum devices.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"98 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards large-scale quantum optimization solvers with few qubits\",\"authors\":\"Marco Sciorilli, Lucas Borges, Taylor L. Patti, Diego García-Martín, Giancarlo Camilo, Anima Anandkumar, Leandro Aolita\",\"doi\":\"10.1038/s41467-024-55346-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quantum computers hold the promise of more efficient combinatorial optimization solvers, which could be game-changing for a broad range of applications. However, a bottleneck for materializing such advantages is that, in order to challenge classical algorithms in practice, mainstream approaches require a number of qubits prohibitively large for near-term hardware. Here we introduce a variational solver for MaxCut problems over <span>\\\\(m={{\\\\mathcal{O}}}({n}^{k})\\\\)</span> binary variables using only <i>n</i> qubits, with tunable <i>k</i> > 1. The number of parameters and circuit depth display mild linear and sublinear scalings in <i>m</i>, respectively. Moreover, we analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature. Altogether, this leads to high quantum-solver performances. For instance, for <i>m</i> = 7000, numerical simulations produce solutions competitive in quality with state-of-the-art classical solvers. In turn, for <i>m</i> = 2000, experiments with <i>n</i> = 17 trapped-ion qubits feature MaxCut approximation ratios estimated to be beyond the hardness threshold 0.941. Our findings offer an interesting heuristics for quantum-inspired solvers as well as a promising route towards solving commercially-relevant problems on near-term quantum devices.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"98 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-55346-z\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55346-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Towards large-scale quantum optimization solvers with few qubits
Quantum computers hold the promise of more efficient combinatorial optimization solvers, which could be game-changing for a broad range of applications. However, a bottleneck for materializing such advantages is that, in order to challenge classical algorithms in practice, mainstream approaches require a number of qubits prohibitively large for near-term hardware. Here we introduce a variational solver for MaxCut problems over \(m={{\mathcal{O}}}({n}^{k})\) binary variables using only n qubits, with tunable k > 1. The number of parameters and circuit depth display mild linear and sublinear scalings in m, respectively. Moreover, we analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature. Altogether, this leads to high quantum-solver performances. For instance, for m = 7000, numerical simulations produce solutions competitive in quality with state-of-the-art classical solvers. In turn, for m = 2000, experiments with n = 17 trapped-ion qubits feature MaxCut approximation ratios estimated to be beyond the hardness threshold 0.941. Our findings offer an interesting heuristics for quantum-inspired solvers as well as a promising route towards solving commercially-relevant problems on near-term quantum devices.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.