废磷酸铁锂高效水热提纯的设计原则

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhaoyi Jiang, Zhihan Xu, Lun Li, Jingwen Wei, Qihuan Liu, Ying-Chu Chen, Tie Xiao, Jie Lei, Ye Zhou
{"title":"废磷酸铁锂高效水热提纯的设计原则","authors":"Zhaoyi Jiang, Zhihan Xu, Lun Li, Jingwen Wei, Qihuan Liu, Ying-Chu Chen, Tie Xiao, Jie Lei, Ye Zhou","doi":"10.1021/acsami.4c17326","DOIUrl":null,"url":null,"abstract":"Direct regeneration, which involves replenishing lithium in spent cathode materials, is emerging as a promising recycling technique for spent lithium iron phosphate (s-LFP) cathodes. Unlike solid-state regeneration, the aqueous relithiation method consumes less energy, ensures even lithium replenishment, and significantly recovers the capacity of s-LFP. However, liquid-phase lithium replenishment formulations are generally less standardized. In this study, we propose designing principles for hydrothermal relithiation recipes to achieve efficient relithiation while ensuring a high yield of relithiated LFP products, assisted by various electrochemical techniques. This led to the discovery of an economical hydrothermal relithiation approach. Specifically, using sulfurous acid (H<sub>2</sub>SO<sub>3</sub>) as the reducing agent and LiOH as the lithium source in the hydrothermal precursor, we achieved complete relithiation at a mild hydrothermal temperature of 90 °C with a high yield (only 3.1% mass loss) of relithiated LFP products. The regenerated LFP recovers approximately 29% of its capacity and exhibits remarkable capacity retention (98.9%). This research highlights a significant advancement in the efficient hydrothermal regeneration of s-LFP, presenting a green and economically viable method for LFP recycling and setting a benchmark for sustainable battery recycling technologies.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"22 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design Principles for Efficient Hydrothermal Relithiation of Spent Lithium Iron Phosphate\",\"authors\":\"Zhaoyi Jiang, Zhihan Xu, Lun Li, Jingwen Wei, Qihuan Liu, Ying-Chu Chen, Tie Xiao, Jie Lei, Ye Zhou\",\"doi\":\"10.1021/acsami.4c17326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Direct regeneration, which involves replenishing lithium in spent cathode materials, is emerging as a promising recycling technique for spent lithium iron phosphate (s-LFP) cathodes. Unlike solid-state regeneration, the aqueous relithiation method consumes less energy, ensures even lithium replenishment, and significantly recovers the capacity of s-LFP. However, liquid-phase lithium replenishment formulations are generally less standardized. In this study, we propose designing principles for hydrothermal relithiation recipes to achieve efficient relithiation while ensuring a high yield of relithiated LFP products, assisted by various electrochemical techniques. This led to the discovery of an economical hydrothermal relithiation approach. Specifically, using sulfurous acid (H<sub>2</sub>SO<sub>3</sub>) as the reducing agent and LiOH as the lithium source in the hydrothermal precursor, we achieved complete relithiation at a mild hydrothermal temperature of 90 °C with a high yield (only 3.1% mass loss) of relithiated LFP products. The regenerated LFP recovers approximately 29% of its capacity and exhibits remarkable capacity retention (98.9%). This research highlights a significant advancement in the efficient hydrothermal regeneration of s-LFP, presenting a green and economically viable method for LFP recycling and setting a benchmark for sustainable battery recycling technologies.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c17326\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c17326","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

直接再生是一种很有前途的回收技术,它涉及到在废正极材料中补充锂,作为废磷酸铁锂(s-LFP)阴极的回收技术。与固态再生不同的是,水还原法消耗的能量更少,保证了锂的均匀补充,并显著恢复了s-LFP的容量。然而,液相锂补给配方通常不太标准化。在本研究中,我们提出了水热还原配方的设计原则,在各种电化学技术的辅助下,在保证高收率的同时实现高效的水热还原。这导致了一种经济的热液提纯方法的发现。具体而言,我们以硫酸(H2SO3)为还原剂,以LiOH为水热前驱体中的锂源,在90℃的温和水热温度下实现了LFP的完全再酯化,重酯化产物收率高(质量损失仅3.1%)。再生后的LFP恢复了约29%的容量,并表现出显著的容量保留率(98.9%)。本研究突出了s-LFP高效水热再生的重大进展,为LFP的回收提供了一种绿色且经济可行的方法,并为可持续电池回收技术树立了标杆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Design Principles for Efficient Hydrothermal Relithiation of Spent Lithium Iron Phosphate

Design Principles for Efficient Hydrothermal Relithiation of Spent Lithium Iron Phosphate
Direct regeneration, which involves replenishing lithium in spent cathode materials, is emerging as a promising recycling technique for spent lithium iron phosphate (s-LFP) cathodes. Unlike solid-state regeneration, the aqueous relithiation method consumes less energy, ensures even lithium replenishment, and significantly recovers the capacity of s-LFP. However, liquid-phase lithium replenishment formulations are generally less standardized. In this study, we propose designing principles for hydrothermal relithiation recipes to achieve efficient relithiation while ensuring a high yield of relithiated LFP products, assisted by various electrochemical techniques. This led to the discovery of an economical hydrothermal relithiation approach. Specifically, using sulfurous acid (H2SO3) as the reducing agent and LiOH as the lithium source in the hydrothermal precursor, we achieved complete relithiation at a mild hydrothermal temperature of 90 °C with a high yield (only 3.1% mass loss) of relithiated LFP products. The regenerated LFP recovers approximately 29% of its capacity and exhibits remarkable capacity retention (98.9%). This research highlights a significant advancement in the efficient hydrothermal regeneration of s-LFP, presenting a green and economically viable method for LFP recycling and setting a benchmark for sustainable battery recycling technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信