大麻素1受体上四氢大麻酚类似物活性的结构基础

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Thor S. Thorsen, Yashraj Kulkarni, David A. Sykes, Andreas Bøggild, Taner Drace, Pattarin Hompluem, Christos Iliopoulos-Tsoutsouvas, Spyros P. Nikas, Henrik Daver, Alexandros Makriyannis, Poul Nissen, Michael Gajhede, Dmitry B. Veprintsev, Thomas Boesen, Jette S. Kastrup, David E. Gloriam
{"title":"大麻素1受体上四氢大麻酚类似物活性的结构基础","authors":"Thor S. Thorsen, Yashraj Kulkarni, David A. Sykes, Andreas Bøggild, Taner Drace, Pattarin Hompluem, Christos Iliopoulos-Tsoutsouvas, Spyros P. Nikas, Henrik Daver, Alexandros Makriyannis, Poul Nissen, Michael Gajhede, Dmitry B. Veprintsev, Thomas Boesen, Jette S. Kastrup, David E. Gloriam","doi":"10.1038/s41467-024-55808-4","DOIUrl":null,"url":null,"abstract":"<p>Tetrahydrocannabinol (THC) is the principal psychoactive compound derived from the cannabis plant <i>Cannabis sativa</i> and approved for emetic conditions, appetite stimulation and sleep apnea relief. THC’s psychoactive actions are mediated primarily by the cannabinoid receptor CB<sub>1</sub>. Here, we determine the cryo-EM structure of HU210, a THC analog and widely used tool compound, bound to CB<sub>1</sub> and its primary transducer, G<sub>i1</sub>. We leverage this structure for docking and 1000 ns molecular dynamics simulations of THC and 10 structural analogs delineating their spatiotemporal interactions at the molecular level. Furthermore, we pharmacologically profile their recruitment of G<sub>i</sub> and β-arrestins and reversibility of binding from an active complex. By combining detailed CB<sub>1</sub> structural information with molecular models and signaling data we uncover the differential spatiotemporal interactions these ligands make to receptors governing potency, efficacy, bias and kinetics. This may help explain the actions of abused substances, advance fundamental receptor activation studies and design better medicines.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"7 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural basis of THC analog activity at the Cannabinoid 1 receptor\",\"authors\":\"Thor S. Thorsen, Yashraj Kulkarni, David A. Sykes, Andreas Bøggild, Taner Drace, Pattarin Hompluem, Christos Iliopoulos-Tsoutsouvas, Spyros P. Nikas, Henrik Daver, Alexandros Makriyannis, Poul Nissen, Michael Gajhede, Dmitry B. Veprintsev, Thomas Boesen, Jette S. Kastrup, David E. Gloriam\",\"doi\":\"10.1038/s41467-024-55808-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Tetrahydrocannabinol (THC) is the principal psychoactive compound derived from the cannabis plant <i>Cannabis sativa</i> and approved for emetic conditions, appetite stimulation and sleep apnea relief. THC’s psychoactive actions are mediated primarily by the cannabinoid receptor CB<sub>1</sub>. Here, we determine the cryo-EM structure of HU210, a THC analog and widely used tool compound, bound to CB<sub>1</sub> and its primary transducer, G<sub>i1</sub>. We leverage this structure for docking and 1000 ns molecular dynamics simulations of THC and 10 structural analogs delineating their spatiotemporal interactions at the molecular level. Furthermore, we pharmacologically profile their recruitment of G<sub>i</sub> and β-arrestins and reversibility of binding from an active complex. By combining detailed CB<sub>1</sub> structural information with molecular models and signaling data we uncover the differential spatiotemporal interactions these ligands make to receptors governing potency, efficacy, bias and kinetics. This may help explain the actions of abused substances, advance fundamental receptor activation studies and design better medicines.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-55808-4\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55808-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

四氢大麻酚(THC)是从大麻植物大麻中提取的主要精神活性化合物,被批准用于呕吐、刺激食欲和缓解睡眠呼吸暂停。四氢大麻酚的精神活性作用主要由大麻素受体CB1介导。在这里,我们确定了HU210(一种THC类似物和广泛使用的工具化合物)与CB1及其主要换能器Gi1结合的低温电镜结构。我们利用这种结构对接和1000 ns分子动力学模拟了THC和10个结构类似物,在分子水平上描述了它们的时空相互作用。此外,我们从药理学上分析了它们对Gi和β-阻滞蛋白的募集以及与活性复合物结合的可逆性。通过将详细的CB1结构信息与分子模型和信号数据相结合,我们揭示了这些配体与受体之间的时空差异相互作用,这些配体控制着效力、功效、偏倚和动力学。这可能有助于解释滥用物质的作用,推进基本受体激活研究和设计更好的药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Structural basis of THC analog activity at the Cannabinoid 1 receptor

Structural basis of THC analog activity at the Cannabinoid 1 receptor

Tetrahydrocannabinol (THC) is the principal psychoactive compound derived from the cannabis plant Cannabis sativa and approved for emetic conditions, appetite stimulation and sleep apnea relief. THC’s psychoactive actions are mediated primarily by the cannabinoid receptor CB1. Here, we determine the cryo-EM structure of HU210, a THC analog and widely used tool compound, bound to CB1 and its primary transducer, Gi1. We leverage this structure for docking and 1000 ns molecular dynamics simulations of THC and 10 structural analogs delineating their spatiotemporal interactions at the molecular level. Furthermore, we pharmacologically profile their recruitment of Gi and β-arrestins and reversibility of binding from an active complex. By combining detailed CB1 structural information with molecular models and signaling data we uncover the differential spatiotemporal interactions these ligands make to receptors governing potency, efficacy, bias and kinetics. This may help explain the actions of abused substances, advance fundamental receptor activation studies and design better medicines.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信