Hyeon‐Ji Shin, Jun‐Tae Kim, Daseul Han, Hyung‐Seok Kim, Kyung Yoon Chung, Junyoung Mun, Jongsoon Kim, Kyung‐Wan Nam, Hun‐Gi Jung
{"title":"2D类石墨烯碳涂层固体电解质用于减少全固态电池的不均匀反应(Adv. Energy Mater. 1/2025)","authors":"Hyeon‐Ji Shin, Jun‐Tae Kim, Daseul Han, Hyung‐Seok Kim, Kyung Yoon Chung, Junyoung Mun, Jongsoon Kim, Kyung‐Wan Nam, Hun‐Gi Jung","doi":"10.1002/aenm.202570001","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"6 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2D Graphene‐Like Carbon Coated Solid Electrolyte for Reducing Inhomogeneous Reactions of All‐Solid‐State Batteries (Adv. Energy Mater. 1/2025)\",\"authors\":\"Hyeon‐Ji Shin, Jun‐Tae Kim, Daseul Han, Hyung‐Seok Kim, Kyung Yoon Chung, Junyoung Mun, Jongsoon Kim, Kyung‐Wan Nam, Hun‐Gi Jung\",\"doi\":\"10.1002/aenm.202570001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":24.4000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202570001\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202570001","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.