Xingyu Zhu, Gary P. Zank, Lingling Zhao and Ashok Silwal
{"title":"低马赫数太阳风中MHD湍流各向异性的径向演化","authors":"Xingyu Zhu, Gary P. Zank, Lingling Zhao and Ashok Silwal","doi":"10.3847/2041-8213/ada354","DOIUrl":null,"url":null,"abstract":"The Parker Solar Probe (PSP) and Wind spacecraft observed the same plasma flow during PSP encounter 15. The solar wind evolves from a sub-Alfvénic flow at 0.08 au to become modestly super-Alfvénic at 1 au. We study the radial evolution of the turbulence properties and deduce the spectral anisotropy based on the nearly incompressible (NI) MHD theory. We find that the spectral index of the z+ spectrum remains unchanged (∼−1.53), while the z− spectrum steepens, the index of which changes from −1.35 to −1.47. The fluctuating kinetic energy is on average greater than the fluctuating magnetic field energy in the sub-Alfvénic flow while smaller in the modestly super-Alfvénic flow. The NI MHD theory well interprets the observed Elsässer spectra. The contribution of 2D fluctuations is nonnegligible for the observed z− frequency spectra for both intervals. Particularly, the magnitudes of 2D and NI/slab fluctuations are comparable in the frequency domain for the modestly super-Alfvénic flow, resulting in a slightly concave shape of z− spectrum at 1 au. We show that, in the wavenumber domain, the power ratio of the observed forward NI/slab and 2D fluctuations is ∼15 at 0.08 au, while it decreases to ∼3 at 1 au, suggesting the growing significance of the 2D fluctuations as the turbulence evolves in low Mach number solar wind.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radial Evolution of MHD Turbulence Anisotropy in Low Mach Number Solar Wind\",\"authors\":\"Xingyu Zhu, Gary P. Zank, Lingling Zhao and Ashok Silwal\",\"doi\":\"10.3847/2041-8213/ada354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Parker Solar Probe (PSP) and Wind spacecraft observed the same plasma flow during PSP encounter 15. The solar wind evolves from a sub-Alfvénic flow at 0.08 au to become modestly super-Alfvénic at 1 au. We study the radial evolution of the turbulence properties and deduce the spectral anisotropy based on the nearly incompressible (NI) MHD theory. We find that the spectral index of the z+ spectrum remains unchanged (∼−1.53), while the z− spectrum steepens, the index of which changes from −1.35 to −1.47. The fluctuating kinetic energy is on average greater than the fluctuating magnetic field energy in the sub-Alfvénic flow while smaller in the modestly super-Alfvénic flow. The NI MHD theory well interprets the observed Elsässer spectra. The contribution of 2D fluctuations is nonnegligible for the observed z− frequency spectra for both intervals. Particularly, the magnitudes of 2D and NI/slab fluctuations are comparable in the frequency domain for the modestly super-Alfvénic flow, resulting in a slightly concave shape of z− spectrum at 1 au. We show that, in the wavenumber domain, the power ratio of the observed forward NI/slab and 2D fluctuations is ∼15 at 0.08 au, while it decreases to ∼3 at 1 au, suggesting the growing significance of the 2D fluctuations as the turbulence evolves in low Mach number solar wind.\",\"PeriodicalId\":501814,\"journal\":{\"name\":\"The Astrophysical Journal Letters\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/2041-8213/ada354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ada354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Radial Evolution of MHD Turbulence Anisotropy in Low Mach Number Solar Wind
The Parker Solar Probe (PSP) and Wind spacecraft observed the same plasma flow during PSP encounter 15. The solar wind evolves from a sub-Alfvénic flow at 0.08 au to become modestly super-Alfvénic at 1 au. We study the radial evolution of the turbulence properties and deduce the spectral anisotropy based on the nearly incompressible (NI) MHD theory. We find that the spectral index of the z+ spectrum remains unchanged (∼−1.53), while the z− spectrum steepens, the index of which changes from −1.35 to −1.47. The fluctuating kinetic energy is on average greater than the fluctuating magnetic field energy in the sub-Alfvénic flow while smaller in the modestly super-Alfvénic flow. The NI MHD theory well interprets the observed Elsässer spectra. The contribution of 2D fluctuations is nonnegligible for the observed z− frequency spectra for both intervals. Particularly, the magnitudes of 2D and NI/slab fluctuations are comparable in the frequency domain for the modestly super-Alfvénic flow, resulting in a slightly concave shape of z− spectrum at 1 au. We show that, in the wavenumber domain, the power ratio of the observed forward NI/slab and 2D fluctuations is ∼15 at 0.08 au, while it decreases to ∼3 at 1 au, suggesting the growing significance of the 2D fluctuations as the turbulence evolves in low Mach number solar wind.