酸性氧还原反应中边缘缺陷对FeN4部分对称性的破坏

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Dr. Bing Tang, Dr. Qianqian Ji, Prof. Xilin Zhang, Runchuan Shi, Jin Ma, Dr. Zechao Zhuang, Dr. Mei Sun, Dr. Huijuan Wang, Ruiqi Liu, Prof. Hengjie Liu, Prof. Chao Wang, Dr. Zhiying Guo, Dr. Lanlu Lu, Dr. Peng Jiang, Prof. Dingsheng Wang, Prof. Wensheng Yan
{"title":"酸性氧还原反应中边缘缺陷对FeN4部分对称性的破坏","authors":"Dr. Bing Tang,&nbsp;Dr. Qianqian Ji,&nbsp;Prof. Xilin Zhang,&nbsp;Runchuan Shi,&nbsp;Jin Ma,&nbsp;Dr. Zechao Zhuang,&nbsp;Dr. Mei Sun,&nbsp;Dr. Huijuan Wang,&nbsp;Ruiqi Liu,&nbsp;Prof. Hengjie Liu,&nbsp;Prof. Chao Wang,&nbsp;Dr. Zhiying Guo,&nbsp;Dr. Lanlu Lu,&nbsp;Dr. Peng Jiang,&nbsp;Prof. Dingsheng Wang,&nbsp;Prof. Wensheng Yan","doi":"10.1002/anie.202424135","DOIUrl":null,"url":null,"abstract":"<p>Fe−N−C catalysts, with a planar <i>D</i><sub>4h</sub> symmetric FeN<sub>4</sub> structure, show promising as noble metal-free oxygen reduction reaction catalysts. Nonetheless, the highly symmetric structure restricts the effective manipulation of its geometric and electronic structures, impeding further enhancements in oxygen reduction reaction performance. Here, a high proportion of asymmetric edge-carbon was successfully introduced into Fe−N−C catalysts through morphology engineering, enabling the precise modulation of the FeN<sub>4</sub> active site. Electrochemical experimental results demonstrate that FeN<sub>4</sub>@porous carbon (FeN<sub>4</sub>@PC), featuring enriched asymmetric edge-FeN<sub>4</sub> active sites, exhibits higher acidic oxygen reduction reaction catalytic activity compared to FeN<sub>4</sub>@flaky carbon (FeN<sub>4</sub>@FC), where symmetric FeN<sub>4</sub> is primarily distributed within the basal-plane. Synchrotron X-ray absorption spectra, X-ray emission spectra, and theoretical calculations indicate that the enhanced oxygen reduction reaction catalytic activity of FeN<sub>4</sub>@PC is attributed to the higher oxidation state of Fe species in the edge structure of FeN<sub>4</sub>@PC. This finding paves the way for controlling the local geometric and electronic structures of single-atom active sites, leading to the development of novel and efficient Fe−N−C catalysts.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 13","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetry Breaking of FeN4 Moiety via Edge Defects for Acidic Oxygen Reduction Reaction\",\"authors\":\"Dr. Bing Tang,&nbsp;Dr. Qianqian Ji,&nbsp;Prof. Xilin Zhang,&nbsp;Runchuan Shi,&nbsp;Jin Ma,&nbsp;Dr. Zechao Zhuang,&nbsp;Dr. Mei Sun,&nbsp;Dr. Huijuan Wang,&nbsp;Ruiqi Liu,&nbsp;Prof. Hengjie Liu,&nbsp;Prof. Chao Wang,&nbsp;Dr. Zhiying Guo,&nbsp;Dr. Lanlu Lu,&nbsp;Dr. Peng Jiang,&nbsp;Prof. Dingsheng Wang,&nbsp;Prof. Wensheng Yan\",\"doi\":\"10.1002/anie.202424135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fe−N−C catalysts, with a planar <i>D</i><sub>4h</sub> symmetric FeN<sub>4</sub> structure, show promising as noble metal-free oxygen reduction reaction catalysts. Nonetheless, the highly symmetric structure restricts the effective manipulation of its geometric and electronic structures, impeding further enhancements in oxygen reduction reaction performance. Here, a high proportion of asymmetric edge-carbon was successfully introduced into Fe−N−C catalysts through morphology engineering, enabling the precise modulation of the FeN<sub>4</sub> active site. Electrochemical experimental results demonstrate that FeN<sub>4</sub>@porous carbon (FeN<sub>4</sub>@PC), featuring enriched asymmetric edge-FeN<sub>4</sub> active sites, exhibits higher acidic oxygen reduction reaction catalytic activity compared to FeN<sub>4</sub>@flaky carbon (FeN<sub>4</sub>@FC), where symmetric FeN<sub>4</sub> is primarily distributed within the basal-plane. Synchrotron X-ray absorption spectra, X-ray emission spectra, and theoretical calculations indicate that the enhanced oxygen reduction reaction catalytic activity of FeN<sub>4</sub>@PC is attributed to the higher oxidation state of Fe species in the edge structure of FeN<sub>4</sub>@PC. This finding paves the way for controlling the local geometric and electronic structures of single-atom active sites, leading to the development of novel and efficient Fe−N−C catalysts.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 13\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202424135\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202424135","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Fe-N-C催化剂具有平面D4h对称的FeN4结构,作为贵金属无氧还原反应催化剂具有良好的应用前景。然而,高度对称的结构限制了其几何和电子结构的有效操纵,阻碍了氧还原反应性能的进一步提高。本研究通过形态学工程将高比例的不对称边碳成功引入Fe-N-C催化剂中,实现了对FeN4活性位点的精确调制。电化学实验结果表明,FeN4@porous碳(FeN4@PC)具有丰富的不对称边缘-FeN4活性位点,比FeN4@flaky碳(FeN4@FC)具有更高的酸性氧还原反应催化活性,其中对称FeN4主要分布在基面上。同步加速器x射线吸收光谱、x射线发射光谱和理论计算表明,FeN4@PC的氧还原反应催化活性增强是由于FeN4@PC的边缘结构中Fe种的氧化态较高。这一发现为控制单原子活性位点的局部几何和电子结构铺平了道路,从而导致新型高效Fe-N-C催化剂的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Symmetry Breaking of FeN4 Moiety via Edge Defects for Acidic Oxygen Reduction Reaction

Symmetry Breaking of FeN4 Moiety via Edge Defects for Acidic Oxygen Reduction Reaction

Fe−N−C catalysts, with a planar D4h symmetric FeN4 structure, show promising as noble metal-free oxygen reduction reaction catalysts. Nonetheless, the highly symmetric structure restricts the effective manipulation of its geometric and electronic structures, impeding further enhancements in oxygen reduction reaction performance. Here, a high proportion of asymmetric edge-carbon was successfully introduced into Fe−N−C catalysts through morphology engineering, enabling the precise modulation of the FeN4 active site. Electrochemical experimental results demonstrate that FeN4@porous carbon (FeN4@PC), featuring enriched asymmetric edge-FeN4 active sites, exhibits higher acidic oxygen reduction reaction catalytic activity compared to FeN4@flaky carbon (FeN4@FC), where symmetric FeN4 is primarily distributed within the basal-plane. Synchrotron X-ray absorption spectra, X-ray emission spectra, and theoretical calculations indicate that the enhanced oxygen reduction reaction catalytic activity of FeN4@PC is attributed to the higher oxidation state of Fe species in the edge structure of FeN4@PC. This finding paves the way for controlling the local geometric and electronic structures of single-atom active sites, leading to the development of novel and efficient Fe−N−C catalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信